高精度授时系统被广泛用于卫星导航、电力同步采样系统中[1]。起初高精度授时系统在导航卫星失连下,由于恒温晶振实际值与标称值存在误差,所以1 h守时误差可达到几微秒。近些年,部分学者提出统计每分钟标准秒脉冲信号下授时晶振产生的总脉冲数的方法来修正导航卫星失连后授时系统的守时误差[2]。但此方法精确度取决于导航卫星失连前1 min的晶振计数模块记录的脉冲数值,因而灵活性低且并未从根本上消除累积误差带来的影响。针对现有技术的不足,本文提出一种以统计学为基础消除累积误差的高精度守时方法。
大侠好,欢迎来到FPGA技术江湖,江湖偌大,相见即是缘分。大侠可以关注FPGA技术江湖,在“闯荡江湖”、"行侠仗义"栏里获取其他感兴趣的资源,或者一起煮酒言欢。
对于白平衡基本概念的详细介绍请查看文章《白平衡初探》,白平衡算法主要的作用是将偏暖或者偏冷的色调自动恢复到正常色调,是图像看起来更加色彩饱满正常。
由于FPGA可以对算法进行并行化,所以FPGA 非常适合在可编程逻辑中实现数学运算。我们可以在 FPGA 中使用数学来实现信号处理、仪器仪表、图像处理和控制算法等一系列应用。这意味着 FPGA 可用于从自动驾驶汽车图像处理到雷达和飞机飞行控制系统的一系列应用。
均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标像素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
我们对60多个顶级国际会议的最佳论文和高引论文进行了分析,惊讶的发现只有10%的最佳论文最后成了真正的高引论文。是评奖委员会选错了吗?不同研究领域的最佳论文和高引论文又有什么特点呢?数据表明SIGGRAPH、SIGSPATIAL以及硬件等会议更“靠谱”(MAP值普遍大于0.5);也有很多会,比如人工智能会议NIPS、CHI、CVPR、KDD、AAAI、ACL、IJCAI等会议的高引论文往往无缘最佳论文。来查查你的会议表现吧:https://aminer.cn/bestpaper
数十年来,寄存器传输级别(RTL)一直是描述超大规模集成(VLSI)系统及其组成知识产权块的主要方法。尽管RTL工具只是逐步发展的,但VLSI系统的复杂性却呈指数级增长,这使设计和验证过程成为生产力的瓶颈[1]。
基于FPGA的均值滤波(二) 之一维求和模块 均值滤波按照整体设计可以分为以下几个子模块: (1)一维求和模块,这里记为sum_1D; (2)二维求和模块,这里记为sum_2D; (3)除法转换模块,此模块比较简单,一般情况下不进行模块封装。 (4)行缓存电路实现行列间像素对齐。 整个顶层模块调用sum_2D模块和除法转换电路求取平均值,记为mean_2D。 用FPGA来求和是最简单的事情,所要注意的是求和结果不要溢出。一般情况下,2个位宽为DW的数据想家,至少得用一个DW+1位宽的数据来存放。 假设窗口尺
因为之前写的系列文章反应不是特别好,所以还是决定把一些复杂的东西简单化(尽量不写系列文章了),所以本篇文章将会完成所有的内容。
AI 科技评论按:说起 FPGA,很多人可能都不熟悉,它的英文全称为 Field Programmable Gate Array,即现场可编程门阵列,也被称为可编程集成电路。随着大数据以及 AI 的发展,越来越多的数据中心引入 FPGA 作为 CPU 的加速器以提高数据处理速度,提升服务器性能,因此降低 FPGA 的能耗也成为数据中心里新的挑战。本文介绍了其中一种降低 FPGA 能耗的方法——基于自测量的 FPGA 动态电压调节解决方案。本文根据嘉宾的直播分享整理而成。 动态电压调节(DVS)作为常见的数字
高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
中值滤波法是一种非线性平滑技术,它将每一像素点的灰度值设置为该点某邻域窗口内的所有像素点灰度值的中值.
Pluto一开始拿到手之后,一般先做一个连接,看看设备能不能工作。由于一般都是直接连接到windows系统下面,所以我们采用IIO Oscilloscope做测试。
今天和大家聊聊统计学里最基础的“平均值”,可能很多同学一听到平均值,就开始想,这个有什么好讲的,小学生都知道平均值是什么。今天我们就和你聊聊你不知道的平均值。
视频流的每个单独帧将具有对应于红色、绿色和蓝色的三个通道。视频帧中的颜色信息不会增强特征检测。此外,与单通道 8 位图像相比,3 通道 8 位图像的计算需要更多时间。因此,RGB 视频帧被转换为 8 位灰度图像。生成的灰度图像噪声更小,阴影细节更多,计算效率更高,如下图所示。
StarRocks 提供两种监控报警的方案。企业版用户可以使用内置的 StarRocksManager,其自带的 Agent 从各个 Host 采集监控信息,上报至 Center Service,然后做可视化展示。StarRocksManager 提供邮件和 Webhook 的方式发送报警通知。如果您有二次开发需求,需要自行搭建部署监控服务,也可以使用开源 Prometheus+Grafana 方案,StarRocks 提供了兼容 Prometheus 的信息采集接口,可以通过直接连接 BE 或 FE 的 HTTP 端口来获取集群的监控信息。
所谓统计量,是“用一个数字来概括数据的特征”。具体说就是“平均值”、“方差”和“标准方差”。
中心极限定理是统计学中比较重要的一个定理。 本文将通过实际模拟数据的形式,形象地展示中心极限定理是什么,是如何发挥作用的。
输出列表的平均值。题中有一个包含数字的列表 [19, 39, 130, 48, 392, 101, 92],使用 for 循环输出这个列表中所有项的平均值。
可以做几乎所有使用样本平均值的统计检验。为了使中心极限定理从根本上起作用,必须能够从样本中计算出平均值。
我们今天来讲讲招聘完成的平均数和招聘完成率的交互的数据分析图表,我们可以根据一定周期内的招聘完成平均数,来交互招聘完成率,根据不同的招聘完成平均数我们可以看到我们招聘完成率是多少,同时我们也可以呈现出每个部门是在平均数以下还是以上,如果要完成80%的招聘完成率,会有哪些部门是有可能在平均数以下的,我们先来看看做好的效果:
Number1, number2, ... 为需要计算平均值的 1 到 30 个参数。
无论交易执行的速度有多快,由于各方之间设备的数量和类型,总是会有一些延迟。这就是所谓的交易延迟。比如通过路由器和交换机等网络设备长距离发送数据所需的时间导致数据中心、广域网的延迟。除了由网络造成的延迟之外,还有由其相关的存储设备造成的延迟。
项目或者设备得供应商投标价格得方法有很多。一种常见得方法是:首先估计项目或设备得成本基值,然后确定投标价格再成本基值得基础上得提高比例,即提价比例,最后形成投标报价价格。在项目投标市场竞争比较激烈,而且项目或者设备的供应商与子供应商数量有限、信息基本对称的情况下,项目成本估计基值在不同的投标方之间差别可能不大。这时,提价比例会成为投标方报价价格的主要影响因素。
历史上最早的科学家曾经不承认实验可以有误差,认为所有的测量都必须是精确的,把任何误差都归于错误。后来人们才慢慢意识到误差永远存在,而且不可避免。即使实验条件再精确也无法完全避免随机干扰的影响,所以做科学实验往往要测量多次,用取平均值之类的统计手段去得出结果。
《实验设计与数据处理》是于 2009 年 10 月由化学工业出版社出版的图书,作者是张成军。本书通过典型实例介绍了常用实验设计及实验数据处理方法在科学研究和工业生产中的实际应用。
确定项目或者设备的供应商投标价格的方法有很多,一种常见的方法是:首先估计项目或设备的成本基值,然后确定投标价格在成本基值的基础上提高比例,即提价比例,最后形成投标报价价格。在项目投标市场竞争比较激烈,而且项目或者设备的供应商与子供应商数量有限、信息基本对称的情况下,项目成本估计基值在不同的投标方之间差别可能不大。这时,提价比例会成为投标方报价价格的主要影响因素。
为了改进蝴蝶算法容易陷入局部最优和收敛精度低的问题,本文从三个方面对蝴蝶算法进行改进。首先通过引入柯西分布函数的方法对全局搜索的蝴蝶位置信息进行变异,提高蝴蝶的全局搜索能力;其次通过引入自适应权重因子来提高蝴蝶的局部搜索能力;最后采用动态切换概率 p p p平衡算法局部搜索和全局搜索的比重,提升了算法的寻优性能。因此本文提出一种混合策略改进的蝴蝶优化算法(CWBOA)。
总结 判断数据的特殊性,不是以距离平均值,而是以S.D.为基准。 只距平均值1个S.D.左右的数据可以被称为普通的数据,距平均值超过2个S.D.的数据可以被称为特殊的数据。 想要知道有几个S.D.,可以用[(数据)- (平均值)] / (S.D.)来计算。 数据组X的全部数据加上定值a得新数据Y,数据Y的平均值是数据X的平均值加上a,数据Y的方差和S.D.与数据X相比不变。 数据组X的全部数据乘以定值k得新数据组Y,数据Y的平均值是数据X的平均值乘以k,数据Y的方差是k的平方倍数,S.D.是k倍。 将数据进
最常用的两种统计量度是平均值和中位数。两种度量均指示分布的中心值,即预期大多数数据点所处的值。但是,在许多应用程序中,考虑到手头的数据,考虑两种方法中的哪一种更为合适是很有用的。在这篇文章中,我们将研究这两个数量之间的差异,并提供建议。
本文介绍基于Python中whitebox模块,对大量长时间序列栅格遥感影像的每一个像元进行忽略NoData值的多时序平均值求取。
在进行数据分析时,有多种需要求平均值的情形,取决于条件是否包含、排除、合并或者单独求取。如下图1所示的数据,可以从多个不同的角度分析平均值。我们可以使用AVERAGE函数和/或IF函数与ABS函数的组合,可以使用AVERAGEIF函数,来实现我们的目的。
对于FPGA或者ASIC的初学者来说,选择哪种语言貌似应该根据自身的需求而定,例如实验室项目需要使用哪种语言,或者实验室师兄师姐使用了哪种语言,或者导师推荐你学习哪种原因,这都是硬性需求了,因为你需要完成项目的接手,所以必须根据要求而来!
是取 0.9,那么这个 V 值表示的是十天以来的温度的加权平均值.如果我们设置
排序后,每次取出的最小和最大的数就是 nums[i]\textit{nums}[i]nums[i] 和 nums[n−1−i]\textit{nums}[n-1-i]nums[n−1−i]。
“超级引擎”是一家专门生产汽车引擎的公司,根据政府发布的新排放要求,引擎排放平均值要低于20ppm, (ppm是英文百万分之一的缩写,这里我们只要理解为是按照环保要求汽车尾气中碳氢化合物要低于20ppm)。公司制造出10台引擎供测试使用,每一台的排放水平如下:
考虑将重采样为 groupby() ,在此我们可以基于任何列进行分组,然后应用聚合函数来检查结果。而在“时间序列”索引中,我们可以基于任何规则重新采样,在该 规则 中,我们指定要基于“年”还是“月”还是“天”还是其他。
在VSCode的工具函数中,numbers模块提供了一些方便处理数字的函数。其中包括clamp函数,用于将一个数字限制在指定的范围内;rot函数,用于对一个数字进行循环移位操作;以及计算移动平均值和滑动窗口平均值的函数等等。
两个例子当中都使用了“平均”这个词,但是实际上有三种不同的方法来测定平均值,而且在大多数情况下,每种方法都会给出不同的数值。
平均值检验是通过比较两个样本的均值来判断两个总体的均值是否相等。还可以执行单因素方差分析和相关分析。
大数定律就以严格的数学形式表现了随机现象的一个性质,平稳结果的稳定性(或者说频率的稳定性);
在日常工作中,有时候单一的图表类型无法满足多维度的数据展示,这时候就要考虑使用组合图表。
上一篇文章简单学习了什么是数据,这次来看看什么是统计指标,进一步了解更多数据分析相关的基础知识。
背景:在深度学习优化算法,如:Momentum、RMSprop、Adam中都涉及到指数加权平均这个概念。为了系统的理解上面提到的三种深度学习优化算法,先着重理解一下指数加权平均(exponentially weighted averages) 定义 指数移动平均(EMA)也称为指数加权移动平均(EWMA),是一种求平均数的方法,应用指数级降低的加权因子。 每个较旧数据的权重都呈指数下降,从未达到零。 m个数据的数据集\({[\theta_1,\theta_2,...,\theta_m]}\) ; 平均
本文介绍基于Python中ArcPy模块,对大量长时间序列栅格遥感影像文件的每一个像元进行多时序平均值的求取。
领取专属 10元无门槛券
手把手带您无忧上云