约定: import pandas as pd import numpy as np from numpy import nan as NaN 填充缺失数据 fillna()是最主要的处理方式了。...2.0 2 NaN NaN NaN 3 8.0 8.0 NaN 用常数填充: df1.fillna(100) 代码结果: 0 1 2 0 1.0 2.0 3.0 1 100.0 100.0 2.0 2...100.0 100.0 100.0 3 8.0 8.0 100.0 通过字典填充不同的常数: df1.fillna({0:10,1:20,2:30}) 代码结果: 0 1 2 0 1.0 2.0 3.0...代码结果: 0 1 2 0 1.0 2.0 3.0 1 0.0 0.0 2.0 2 0.0 0.0 0.0 3 8.0 8.0 0.0 传入method=” “改变插值方式: df2=pd.DataFrame...(method=’ffill’)#用前面的值来填充 代码结果: 0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 4.0 5.0 2 6 5 5 4.0 5.0 3 1 9 9 4.0
大家好,又见面了,我是你们的朋友全栈君。...如果单独是 >>> df.fillna(0) >>> print(df) # 可以看到未发生改变 >>> print(df.fillna(0)) # 如果直接打印是可以看到填充进去了 >>> print...(df) # 但是再次打印就会发现没有了,还是Nan 将其Nan全部填充为0,这时再打印的话会发现根本未填充,这是因为没有加上参数inplace参数。...>>> df.fillna(0, inplace = True) >>> print(df) #可以看到发生改变 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/170029
约定: import pandas as pd import numpy as np from numpy import nan as NaN 填充缺失数据 fillna()是最主要的处理方式了。...NaN 2.0 2 NaN NaN NaN 3 8.0 8.0 NaN 用常数填充: df1.fillna(100) 代码结果: 0 1 2 0 1.0 2.0 3.0 1 100.0 100.0...2.0 2 100.0 100.0 100.0 3 8.0 8.0 100.0 通过字典填充不同的常数: df1.fillna({ 0:10,1:20,2:30}) 代码结果: 0...(method='ffill')#用前面的值来填充 代码结果: 0 1 2 3 4 0 6 6 2 4.0 1.0 1 4 7 0 4.0 5.0 2 6 5 5 4.0 5.0 3 1 9 9...4.0 5.0 4 4 8 1 5.0 9.0 传入limit=” “限制填充个数: df2.fillna(method='bfill',limit=2) 代码结果: 0 1 2 3 4 0 6
大家好,又见面了,我是你们的朋友全栈君。 0.摘要 pandas中fillna()方法,能够使用指定的方法填充NA/NaN值。...) 参数: value:用于填充的空值的值。...定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值, backfill / bfill表示用后面行/列的值,填充当前行/列的空值。 axis:轴。...如果method被指定,对于连续的空值,这段连续区域,最多填充前 limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。...(data=a) print(d) # 用0填补空值 print(d.fillna(value=0)) # 用前一行的值填补空值 print(d.fillna(method='pad',axis=0
backfill/bfill:用下一个非缺失值填充该缺失值 None:指定一个值去替换缺失值(缺省默认这种方式) 1.3 limit参数: 限制填充个数 1.4 axis参数 修改填充方向 补充...2.1.1 用常数填充 #1.用常数填充 print (df1.fillna(100)) print ("-----------------------") print (df1) 运行结果:...第key列的NaN用key对应的value值填充 df1.fillna({ 0:10,1:20,2:30}) 运行结果: 0 1 2 0 1.0 2.0...6 4 5.0 2.0 2 4 9 2 5.0 5.0 3 9 7 3 5.0 5.0 4 6 1 3 5.0 5.0 2.4 使用limit参数 用下一个非缺失值填充该缺失值且每列只填充...->pandas | DataFrame基础运算以及空值填充 发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/170012.html原文链接:https://javaforall.cn
大家好,又见面了,我是你们的朋友全栈君。 api参考: fillna: 使用指定的方法填充 NA/NaN 值。...0.0 4 2、我们还可以向前或向后传播非空值。...2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 4、只替换第一个 NaN 元素。...NaN 5 3 NaN 3.0 NaN 4 5、使用 DataFrame 填充时,替换沿相同的列名和相同的索引发生 >>> df2 = pd.DataFrame(np.zeros((4, 4)),...0.0 0.0 5 3 0.0 3.0 0.0 4 6、inplace 如果为 True,则就地填充。
也就是说对于对于只在一个DataFrame中缺失的位置会被替换成我们指定的值,如果在两个DataFrame都缺失,那么依然还会是Nan。 ?...fillna pandas除了可以drop含有空值的数据之外,当然也可以用来填充空值,事实上这也是最常用的方法。 我们可以很简单地传入一个具体的值用来填充: ?...fillna会返回一个新的DataFrame,其中所有的Nan值会被替换成我们指定的值。...df3.fillna(3, inplace=True) 除了填充具体的值以外,我们也可以和一些计算结合起来算出来应该填充的值。比如说我们可以计算出某一列的均值、最大值、最小值等各种计算来填充。...fillna这个函数不仅可以使用在DataFrame上,也可以使用在Series上,所以我们可以针对DataFrame中的某一列或者是某些列进行填充: ?
DataFrame结构支持使用dropna()方法丢弃带有缺失值的数据行,或者使用fillna()方法对缺失值进行批量替换,也可以使用loc()、iloc()方法直接对符合条件的数据进行替换。...,how='all'时表示某行全部为缺失值才丢弃;参数thresh用来指定保留包含几个非缺失值数据的行;参数subset用来指定在判断缺失值时只考虑哪些列。...用于填充缺失值的fillna()方法的语法为: fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast...=None, **kwargs) 其中,参数value用来指定要替换的值,可以是标量、字典、Series或DataFrame;参数method用来指定填充缺失值的方式,值为'pad'或'ffill'时表示使用扫描过程中遇到的最后一个有效值一直填充到下一个有效值...,值为'backfill'或'bfill'时表示使用缺失值之后遇到的第一个有效值填充前面遇到的所有连续缺失值;参数limit用来指定设置了参数method时最多填充多少个连续的缺失值;参数inplace
Pandas 库中提供了缺失值替换的方法fillna,格式如下: DataFrame.fillna(value=None, method=None, axis=None, inplace=False,...limit=None) fillna参数说明: 参数名称 参数说明 value 用于填充缺失值的标量值或字典对象 method 插值方式 axis 待填充的轴,默认 axis=0 inplace 修改调用者对象而不产生副本...limit (对于前向和后向填充)可以连续填充的最大数量 (1)用单个值填充 df.fillna(0) (2)从前向后填充(forward-fill) df.fillna(method='ffill...') (3)从后向前填充(back-fill) df.fillna(method='bfill') 上面填充的方向默认是axis=0,即垂直方向填充;如果希望水平方向填充,需要设置axis=1。...默认为 ‘first’,表示保留第一个出现的重复值;‘last’ 表示保留最后一个出现的重复值;False 表示删除所有重复值。 inplace:可选参数,指定是否在原地修改 DataFrame。
面对缺失值三种处理方法: option 1: 去掉含有缺失值的样本(行) option 2:将含有缺失值的列(特征向量)去掉 option 3:将缺失值用某些值填充(0,平均值,中值等) 对于dropna...和fillna,dataframe和series都有,在这主要讲datafame的 对于option1: 使用DataFrame.dropna(axis=0, how='any', thresh=None.../ pad: 使用前一个值来填充缺失值 backfill / bfill :使用后一个值来填充缺失值 limit 填充的缺失值个数限制。...>>> df.fillna(0) A B C D 0 0.0 2.0 0.0 0 1 3.0 4.0 0.0 1 2 0.0 0.0 0.0 5 3 0.0 3.0 0.0 4 # 使用后边或前边的值填充缺失值...1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 #只替换第一个缺失值 >>>df.fillna(value=values, limit=1) A B C
参数:value :scalar(标量), dict, Series, 或DataFrame 用于填充孔的值(例如0),或者是dict / Series / DataFrame的值, 该值指定用于每个索引...不在dict / Series / DataFrame中的值将不被填充。该值不能是列表(list)。...注意:这将修改此对象上的任何其他视图 (例如,DataFrame中列的无副本切片)。 limit: int,默认值None 如果指定了method, 则这是要向前/向后填充的连续NaN值的最大数量。...返回值:DataFrame 缺少值的对象已填充。...0.0 2.0 2.0 0 1 3.0 4.0 2.0 1 2 0.0 1.0 2.0 5 3 0.0 3.0 2.0 4 仅替换第一个NaN元素>>> df.fillna(value=values,
method='bfill')) #后向填充 print(df.fillna(method='bfill', limit=1)) #后向填充且只填充1个 -----结果----- 后向填充:...1.277521 1 -1.179992 -0.622227 -1.277521 2 -1.258739 -0.622227 -1.277521 3 -1.442985 0.195110 0.553435 后向填充且只填充...函数参数 函数 描述 value 标量值或字典类对象用于填充缺失值 method 插值方法,如果没有其他参数,默认为'ffill' axis 需要填充的轴,默认axis=0 inplace 修改被调用的对象...,而不是生成一个备份 limit 用于前向或后向填充时最大的填充范围 2 数据转换 (1)删除重复值 删除重复值用到了drop_duplicates方法: df = pd.DataFrame({'k1...和drop_duplicated默认都是保留第一个观测到的值,传入参数last="last"将会返回最后一个: print(df.drop_duplicates(['k1'], keep = 'last
/pandas.DataFrame.sort_values.html 4.2.2 空值处理 pandas.DataFrame.fillna(value = None,method = None,inplace...= False) value:用于填充的值,可以是具体值、字典和数组,不能是列表; method:填充方法,有 ffill 和 bfill 等; inplace默认无False,如果为True,则将修改此对象上的所有其他视图...更多关于pandas.DataFrame.fillna的用法,戳下面官方链接:https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html...data['department'].fillna(method="ffill") # 填充上一个值,即填充“水果” 输出结果: ?...data['department'].fillna(method="bfill") # 填充下一个值,即填充“日用品” data['department'].fillna(value="冷冻食品
当且仅当两个DataFrame中都有值时,才会有运算结果,其他位置的结果都为空值,运算原理如下图。 ? 在运算结果中有很多空值,如果需要进行空值填充,可以使用fillna()函数。 ?...fillna(value): 运算出结果后,将所有空值的位置都填充成指定值。 在算术运算函数中,可以使用fill_value参数,在运算前先填充数据。 ?...与fillna()函数不同,使用fill_value参数是先填充数据再进行运算,而fillna()函数是先运算再对结果填充,所以两者的结果不一样。...可以使用fillna()函数对运算结果中的空值进行填充。 ? 可以使用fill_value参数先填充数据再进行运算。...fillna()函数的用法也一样,对运算结果进行空值填充。 但是,DataFrame与Series的算术运算不支持fill_value参数,不能先填充再运算,会报错。
大家好,又见面了,我是你们的朋友全栈君。...用字典填充 #2.用字典填充 df1.fillna({0:10,1:20,2:30}) 运行结果: 二、指定inplace参数 #二、指定inplace参数 print (df1.fillna(0,...] = NaN df2 运行结果: #1.method = 'ffill'/'pad':用前一个非缺失值去填充该缺失值 df2.fillna(method='ffill') 运行结果: 2.method...= ‘bflii’/’backfill’:用下一个非缺失值填充该缺失值 #2.method = 'bflii'/'backfill':用下一个非缺失值填充该缺失值 df2.fillna(method...='bfill') 运行结果: 四、指定limit参数 #四、指定limit参数 #用下一个非缺失值填充该缺失值 #只填充2个 df2.fillna(method='bfill', limit=2
+1 df['Age'] = df['Age'] + 1 print(df, end="\n\n") # 缺失值处理 填充缺失值 使用每列的均值填充缺失值 df['Age'].fillna(df['...= df.fillna(0) print(df_filled_constant) # 使用前一个值(向前填充)填充缺失值 df_filled_ffill = df.fillna(method='ffill...') print(df_filled_ffill) # 使用后一个值(向后填充)填充缺失值 df_filled_bfill = df.fillna(method='bfill') print(df_filled_bfill...) # 使用每列的均值填充缺失值 df_filled_mean = df.fillna(df.mean()) print(df_filled_mean) # 使用每列的中位数填充缺失值 df_filled_median...= df.fillna(df.median()) print(df_filled_median) # 仅填充特定列的缺失值 df['A'] = df['A'].fillna(df['A'].mean
这是 pandas 快速上手系列的第 6 篇文章,本篇详细介绍了pandas.fillna() 填充缺失值(NaN)的各种妙招,包括用常数值填充缺失值、用前一个值或后一个值填充、用列的均值、不同列使用不同值填充等方法...fillna() 是 Pandas 中常用的处理缺失值 (NaN) 的函数。它可以用指定的值或插值方法来填充 DataFrame 或 Series 中的缺失值。...3.0 3 4.0 0.0 用前一个值填充缺失值,则第一行的 NaN 会被跳过填充,设置 method='ffill' In [44]: # 用前一个值填充缺失值 ...: df_filled...3 4.0 NaN 用列的均值填充缺失值 In [47]: df.fillna(df.mean()) Out[47]: A B 0 1.000000 2.5 1 2.000000...2.0 2 2.333333 3.0 3 4.000000 2.5 不同列使用不同值填充,下面是 A 列空值用0填充,B 列的空值用 1 填充 In [49]: df.fillna({'A'
大家好,又见面了,我是你们的朋友全栈君。 df.dropna()函数用于删除dataframe数据中的缺失数据,即 删除NaN数据....:删除全为nan的行 thresh int,保留至少 int 个非nan行 subset list,在特定列缺失值处理 inplace bool,是否修改源文件 测试: >>>df = pd.DataFrame...Alfred NaN NaT 1 Batman Batmobile 1940-04-25 2 Catwoman Bullwhip NaT 只保留至少...2个非NA值的行: >>>df.dropna(thresh=2) name toy born 1 Batman Batmobile 1940-04-25...2 Catwoman Bullwhip NaT 从特定列中查找缺少的值: >>>df.dropna(subset=['name', 'born']) name
大家好,又见面了,我是你们的朋友全栈君。 本文概述 我们可以使用fillna()函数填充数据集中的空值。...) 参数 值:它是一个用于填充空值的值, 或者是一个Series / dict / DataFrame。...method:一种用于填充重新索引的Series中的空值的方法。 axis:行/列的整数或字符串值。我们需要沿着其填充缺失值的轴。 就地:如果为True, 它将在空白处填充值。...Return 它返回一个对象, 在其中填充了缺少的值。...NaN值的DataFrame。
dropna函数参数 axis:操作的轴向,X/Y how:两个参数any与all,all代表整个行都是空才会删除 thresh:某行的空值超过这个阈值才会删除 subset:处理空值时,只考虑给定的列...删除所有有空的行 axis属性值 这里的dropna只填写了【axis】一个参数,其中0的值代表行,1的值代表列。...=None, **kwargs) value:用于填充的空值的值。.../列的值,填充当前行/列的空值。...如果method被指定,对于连续的空值,这段连续区域,最多填充前,limit 个空值(如果存在多段连续区域,每段最多填充前 limit 个空值)。
领取专属 10元无门槛券
手把手带您无忧上云