首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas实战-填充数据

本文中记录了最近工作在处理数据的时候遇到的一个需求案例:按照指定的需求填充数据。数据是自己模拟的,类似于业务上的数据。 模拟数据 ?...说明 数据 在一个DataFrame数据框中,有time、userid两个字段,分别代表日期和姓名,都有重复值 需求 增加3个字段:二十九、三十、三十一。...它们的取值要求如下(取值只有0和1): 如果某个人在29号有登陆,则他的全部记录的二十九字段填充为1,否则为0; 30和31号也是类似的要求 模拟数据 import numpy as np import...pandas as pd import datetime df = pd.DataFrame({"time":["2020-05-28","2020-05-28","2020-05-28","2020...df[df['userid'].isin(["zhangsan"])] df1.index Int64Index([1, 3], dtype='int64') 其他字段 其余信息直接用fillna方法填充

1K10

Pandas数据变幻之向下填充

pandas数据处理真的是千变万化,超级强大 有人在群里提出了一个问题,如何将下图中的左图转换为右图? ?...话不多说,直接开干 其实这个问题在excel中用if函数加vlookup函数分分钟搞定,但是人家说数据量大,excel处理不了,那只能python出马了,我想了一下,问题的关键是向下填充,每一个被查找点就是一个基准点...,被查找点不改变时,基准点不变,可以参考excel中的if函数进行处理,基准点不变的本质就是向下填充。...构造样例数据如下:(复制一份备用) ? 新增一个临时列 tmp,填值暂时都是被查找点0 ? 使用if函数对tmp列数据进行变幻,实现向下填充 ?...至此,每个查找点(邻小区)的基准点(被查找点,源小区)已经找到了,跟原表merge一下得到需要的标识列就好了 ? 剔除多余的行(基准点所在行,被查找点所在行) ? 调整列的顺序 ?

1.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PandasGUI:使用图形用户界面分析 Pandas 数据帧

    数据预处理是数据科学管道的重要组成部分,需要找出数据中的各种不规则性,操作您的特征等。...Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...相同的命令是: pip install pandasgui 要在 PandasGUI 中读取 文件,我们需要使用show()函数。让我们从将它与 pandas 一起导入开始。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。

    3.9K20

    Pandas中的数据分类

    公众号:尤而小屋 作者:Peter 编辑:Pete 大家好,我是Peter~ 本文中介绍的是Categorical类型,主要实现的数据分类问题,用于承载基于整数的类别展示或编码的数据,帮助使用者获得更好的性能和内存使用...--MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...pandas.core.series.Series Categorical类型创建 生成一个Categorical实例对象 通过例子来讲解Categorical类型的使用 subjects = ["语文...Categorical对象 通过pandas.Categorical来生成 通过构造函数from_codes,前提是你必须先获得分类编码数据 # 方式1 df2["subject"] = df2[...,也就是one-hot编码(独热码);产生的DataFrame中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \

    8.6K20

    Pandas中的数据转换

    import pandas as pd import numpy as np 一、⭐️apply函数应用 apply是一个自由度很高的函数 对于Series,它可以迭代每一列的值操作: df = pd.read_csv...中的axis参数=0时,永远表示的是处理方向而不是聚合方向,当axis='index'或=0时,对列迭代对行聚合,行即为跨列,axis=1同理 二、⭐️矢量化字符串 为什么要用str属性 文本数据也就是我们常说的字符串...,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。

    13510

    python中fillna_python – 使用groupby的Pandas fillna

    例如,我有这个数据帧 one | two | three 1 1 10 1 1 nan 1 1 nan 1 2 nan 1 2 20 1 2 nan 1 3 nan 1 3 nan 我想使用列[‘one...’]和[‘two’]的键,这是相似的,如果列[‘three’]不完全是nan,那么从列中的值为一行类似键的现有值’3′] 这是我的愿望结果 one | two | three 1 1 10 1 1 10...我尝试了向前填充,这给了我相当奇怪的结果,它向前填充第2列.我正在使用此代码进行前向填充. df[‘three’] = df.groupby([‘one’,’two’], sort=False)[‘three...’].ffill() 感谢您的时间....解决方法: 如果每组只有一个非NaN值,则每组使用ffill(向前填充)和bfill(向后填充),因此需要使用lambda: df[‘three’] = df.groupby([‘one’,’two’]

    1.8K30

    【计算机网络】数据链路层 : 封装数据帧 ( 附加信息 | 帧长度 | 透明传输 | 字符计数法 | 字符填充法 | 零比特填充法 | 违规编码法 )

    标记 , 从连续的比特流中 , 识别出 数据帧的 开始 和 结束位置 ; 二、 “数据帧” 附加信息 ---- "数据帧" 附加信息 : ① 帧界定符 : 首部 和 尾部 包含 很多控制信息 , 其中的一种控制信息...: ① 帧界定符 : 在 首部 和 尾部 添加的 字段 中有 帧定界符 , 根据 帧定界符 可以确定数据帧的开始 , 结束位置 ; ② 帧同步 : 接收方 从 接收到的 二进制 比特流中 , 识别出...: 字符计数法 字符填充法 零比特填充法 违规编码法 六、 透明传输 ---- "透明传输" 概念 : 不管传输什么样的比特组合 , 都能够在链路上传输 ; 数据信息 与 控制信息 区分问题 : 数据中的比特组合..., 如 图像 , 音频 , 视频 等 , 此时 文件中的数据可能是任意值 , 就有可能与 帧尾部 或 帧首部 相同 , 此时就需要 采用 字符填充法实现 透明传输 ; 字符填充法 : ① 数据的随机性...: 原始数据中 , 存在 与 帧首部 , 帧尾部 相同的数据 ; ② 发送端填充转义字符 : 在这些 数据中的 帧首部 / 帧尾部 相同的数据前 , 填充一个转义字符 , 告诉接收端 , 转义字符后的后续数据作为帧数据

    2.1K00

    InfoPath中repeationg section动态填充数据

    通过选择不同的字段,填充下面的title,abstract,以及最下面的Image Url和Image Tooltip。...这个四个字段的数据是动态从RelatedContent DataObject中读取的。因为整个的大的section可以重复,所以最开始实现起来,问题还是蛮多的。...主要使用到了current()函数,后续博客里面将介绍,如何在repeating section中是使用current()函数,达到指定的section绑定不同的数据。...通过使用current()函数,title,abstact,image url和image tooltip都可以正常的填充数据,但是保存好infopath之后,用户重新打开,发现前面提到的四个字段都为空...然后需要用户最后点击最下面的“Binding Data”按钮,然后将Populate的值全部复制到普通的四个字段中。这样得以保存infopath中的数据。

    1.1K80

    如何在 Pandas 中创建一个空的数据帧并向其附加行和列?

    Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。...我们还了解了一些 Pandas 方法、它们的语法以及它们接受的参数。这种学习对于那些开始使用 Python 中的 Pandas 库对数据帧进行操作的人来说非常有帮助。

    28030

    数据帧的学习整理

    大家好,又见面了,我是你们的朋友全栈君。 事先声明,本文档所有内容均在本人的学习和理解上整理,不具有权威性,甚至不具有准确性,本人也会在以后的学习中对不合理之处进行修改。...在了解数据帧之前,我们得先知道OSI参考模型 咱们从下往上数,数据帧在第二层数据链路层处理。我们知道,用户发送的数据从应用层开始,从上往下逐层封装,到达数据链路层就被封装成数据帧。...其中的Org Code字段设置为0,Type字段即封装上层网络协议,同Ethernet_II帧。 数据帧在网络中传输主要依据其帧头的目的mac地址。...当数据帧封装完成后从本机物理端口发出,同一冲突域中的所有PC机都会收到该帧,PC机在接受到帧后会对该帧做处理,查看目的MAC字段,如果不是自己的地址则对该帧做丢弃处理。...如果目的MAC地址与自己相匹配,则先对FCS进行校验,如果校验结果不正确则丢弃该帧。校验通过后会产看帧中的type字段,根据type字段值将数据传给上层对应的协议处理,并剥离帧头和帧尾(FCS)。

    2.8K20

    Pandas的数据结构Pandas的数据结构

    Pandas的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的...对象,由一组数据(各种NumPy数据类型)以及一组与之对应的索引(数据标签)组成。...类似一维数组的对象 由数据和索引组成 索引(index)在左,数据(values)在右 索引是自动创建的 [图片上传失败...(image-3ff688-1523173952026)] 1....DataFrame既有行索引也有列索引,它可以被看做是由Series组成的字典(共用同一个索引),数据是以二维结构存放的。...类似多维数组/表格数据 (如,excel, R中的data.frame) 每列数据可以是不同的类型 索引包括列索引和行索引 [图片上传失败...

    88520

    tcpip模型中,帧是第几层的数据单元?

    在网络通信的世界中,TCP/IP模型以其高效和可靠性而著称。这个模型是现代互联网通信的基石,它定义了数据在网络中如何被传输和接收。其中,一个核心的概念是数据单元的层级,特别是“帧”在这个模型中的位置。...在这一层中,数据被封装成帧,然后通过物理媒介,如有线或无线方式,传输到另一端的设备。那么,帧是什么呢?帧可以被看作是网络数据传输的基本单位。...但是,对帧在TCP/IP模型中的作用有基本的理解,可以帮助开发者更好地理解数据包是如何在网络中传输的,以及可能出现的各种网络问题。...在使用Python进行网络编程时,虽然不直接操作帧,但可以通过创建和使用socket来发送和接收数据。...客户端则连接到这个服务器,并接收来自服务器的消息。虽然这个例子中的数据交换看似简单,但在底层,TCP/IP模型中的网络接口层正通过帧来传输这些数据。

    30610

    pandas中的数据处理利器-groupby

    在数据分析中,常常有这样的场景,需要对不同类别的数据,分别进行处理,然后再将处理之后的内容合并,作为结果输出。对于这样的场景,就需要借助灵活的groupby功能来处理。...上述例子在python中的实现过程如下 >>> import numpy as np >>> import pandas as pd >>> df = pd.DataFrame({'x':['a','a...中的groupby实际上非常的灵活且强大,具体的操作技巧有以下几种 1....汇总数据 transform方法返回一个和输入的原始数据相同尺寸的数据框,常用于在原始数据框的基础上增加新的一列分组统计数据,用法如下 >>> df = pd.DataFrame({'x':['a','...中的groupby功能非常的灵活强大,可以极大提高数据处理的效率。

    3.6K10

    Pandas系列 - 重建索引

    示例 重建索引与其他对象对齐 填充时重新加注 重建索引时的填充限制 重命名 重新索引会更改DataFrame的行标签和列标签。重新索引意味着符合数据以匹配特定轴上的一组给定的标签。...可以通过索引来实现多个操作: 重新排序现有数据以匹配一组新的标签 在没有标签数据的标签位置插入缺失值(NA)标记 示例 import pandas as pd import numpy as np N...1.543179 -0.590498 0.569140 5 -0.887682 -0.390340 0.793262 6 0.200928 0.536087 -0.884333 注意 : 在这里,df1数据帧...填充时重新加注 reindex()采用可选参数方法,它是一个填充方法 其值如下: pad/ffill - 向前填充值 bfill/backfill - 向后填充值 nearest - 从最近的索引值填充...制参数在重建索引时提供对填充的额外控制。

    98021

    Pandas知识点-缺失值处理

    数据处理过程中,经常会遇到数据有缺失值的情况,本文介绍如何用Pandas处理数据中的缺失值。 一、什么是缺失值 对数据而言,缺失值分为两种,一种是Pandas中的空值,另一种是自定义的缺失值。 1....subset: 删除空值时,只判断subset指定的列(或行)的子集,其他列(或行)中的空值忽略,不处理。当按行进行删除时,subset设置成列的子集,反之。...有 ffill,pad,bfill,backfill 四种填充方式可以使用,ffill 和 pad 表示用缺失值的前一个值填充,如果axis=0,则用空值上一行的值填充,如果axis=1,则用空值左边的值填充...除了可以在fillna()函数中传入method参数指定填充方式外,Pandas中也实现了不同填充方式的函数,可以直接调用。...在进行数据填充时,可能填充之后还有空值,如用ffill 和 pad填充时,数据第一行就是空值。

    4.9K40
    领券