在 迁移学习 中,由于传统深度学习的 学习能力弱,往往需要 海量数据 和 反复训练 才能修得 泛化神功 。为了 “多快好省” 地通往炼丹之路,炼丹师们开始研究 Zero-shot Learning / One-shot Learning / Few-shot Learning。
以下内容为kaggle网站上的一个案例;原文地址 Kobe Bryant Shot Selection。主要内容是探索科比20年NBA生涯的数据,包括进攻方式,出手距离和出手区域,命中率等。
文章和代码已经归档至【Github仓库:https://github.com/timerring/java-tutorial 】。 线程-应用到坦克大战 坦克大战0.3 分析如何实现当用户按下J键,我们的坦克就发射一颗子弹,思路: 当发射一颗子弹后,就相当于启动一个线程 Hero有子弹的对象,当按下J时,我们就启动一个发射行为(线程),让子弹不停的移动,形成一个射击的效果。 我们MyPanel需要不停的重绘子弹,才能出现该效果. 当子弹移动到面板的边界时,就应该销毁(把启动的子弹的线程销毁) 坦克大战0.
推荐系统经常面临长尾问题,例如商品的分布服从幂率分布导致非常多的长尾样本只出现过很少的次数,模型在这部分样本上的效果比较差。对长尾样本增加权重,或者通过采样的方法增加长尾样本,又会影响数据分布,进而造成头部样本效果下降。针对这类问题,谷歌提出了一种可以实现头部样本知识迁移到尾部样本的迁移学习框架,使推荐系统中长尾预测问题效果得到显著提升,并且头部的预测效果也没有受到损失,实现了头部尾部双赢。
这里用到 group_by()和 summarise()函数。一个简单的小例子理解这两个函数的用法
神经网络搜索(Neuarl Architecture Search)是近年来兴起的热门方向。在这次 ICML 的文章中,我们提出了 Few-shot NAS, 通过分割搜索空间,对分割后的子空间独立建立了一个子超网络(sub-supernet)来预测网络性能。通过建立 one-shot NAS 和传统挨个训练 NAS 的联系,few-shot NAS 巧妙继承了两种方法的优点,兼有 one-shot NAS 的快速和传统 NAS 的准确网络性能评估。大量实验表明 few-shot NAS 是一个简单易行的方法,在不同任务上和数据集上能提升当下几乎所有的 NAS 方法,包括 ImageNet 及 CIFAR-10 的分类任务和 GAN 这样的生成任务等。该文章被 ICML-2021 接收为 long talk。
接下来我们就开始今日的主题:自我学习,最少的样本去学习。听到这个,大家会想到剪枝、压缩神经网络。今天这个更加有趣,现在我们开始欣赏学术的盛宴!
由上图我们可以看到(以最左图为例),one-shot模型的准确率从0.1~0.8, 而stand-alone(即retrain之后的子模型)的准确率范围却只是0.92~0.945。为什么one-shot模型之间的准确率差别会更大呢?
每天给你送来NLP技术干货! ---- 文 | ALme@知乎 排版 | 夕小瑶的卖萌屋 这两年看见很多人,包括我实习的mentor在内,都在批评few-shot learning,觉得是学术界在自high,思考良久,感觉有必要给这个领域正个名~(注意,此答案仅关注few-shot image classification) 首先,要讨论few-shot learning的价值,咱得先把few-shot learning(FSL)这个问题的定位搞清楚。而要搞清楚few-shot learning的定
这两年看见很多人,都在批评few-shot learning,觉得是学术界在自high,思考良久,感觉有必要给这个领域正个名~(注意,本文仅关注few-shot image classification)
This paper introduces a new prompting strategy called Plan-and-Solve (PS) prompting to improve the performance of large language models (LLMs) in multi-step reasoning tasks. The authors propose two components of PS prompting: devising a plan to divide the task into smaller subtasks, and carrying out the subtasks according to the plan. They also extend PS prompting with more detailed instructions to address calculation errors and improve the quality of generated reasoning steps, resulting in PS+ prompting.
我们倾向于把few-shot learning理解成这样一个问题--如何训练一个模型使其基于少量的训练样本能在目标任务中获得好的性能。
神经网络模型经常被研究人员戏称为「堆积木」,通过将各个基础模型堆成更大的模型,更多的数据来取得更好的效果。
ChatGPT 以及 GPT4 作为纯自回归式语言模型,本不应该期待其有什么推理能力,尤其是数学推理,但是他们在基础的推理任务上却十分让我们惊艳(当然肯定不能作为专业的数学解题工具),这让我们非常好奇大模型(LLM)这么多参数里面到底藏了些什么好东西,怎么去激发大模型的潜能给我们带来更多惊喜。
刚刚,人工智能初创公司 Anthropic 宣布了一种「越狱」技术(Many-shot Jailbreaking)—— 这种技术可以用来逃避大型语言模型(LLM)开发人员设置的安全护栏。
我是个前端渣渣,在使用MUI的时候找了好久他的modal,最后发现跟我的实现不一样,于是自己写了一个原生的。
前两章我们分别介绍了思维链的多种使用方法以及思维链(COT)的影响因素。这一章更多面向应用,既现实场景中考虑成本和推理延时,大家还是希望能用6B的模型就不用100B的大模型。但是在思维链基础和进阶玩法中反复提到不论是few-shot还是zero-shot的思维链能力似乎都是100B左右的大模型才有的涌现能力,而在小模型上使用思维链甚至会带来准确率的下降。
这里还提供了网球模型训练的代码,大家可以使用Colab或Kaggle的免费GPU进行训练。
Few-shot关系提取涉及使用有限数量的注释样本识别文本中两个特定实体之间的关系类型。通过应用元学习和神经图技术,已经出现了对这个问题的各种解决方案,这些技术通常需要训练过程进行调整。
文章和代码已经归档至【Github仓库:https://github.com/timerring/java-tutorial 】。 IO 流-应用到坦克大战 坦克大战0.5版 增加功能 防止敌人坦克重叠运动 记录玩家的总成绩(累积击毁敌方坦克数),存盘退出【io流】 记泉退出游戏时敌人坦克坐标/方向,存盘退出【io流】 玩游戏时,可以选择是开新游戏还是继续上局游戏 package com.hspedu.tankgame5; /** * 炸弹 */ public class Bomb {
为用户启用屏幕截图功能已经成为移动应用中用户体验的重要部分。这项功能使用户能够保存或分享应用界面的当前状态,以记住一个难忘的时刻,与朋友分享成就,或向开发者报告问题。
最近几年,GPT-3、PaLM和GPT-4等LLM刷爆了各种NLP任务,特别是在zero-shot和few-shot方面表现出它们强大的性能。因此,情感分析(SA)领域也必然少不了LLM的影子,但是哪种LLM适用于SA任务依然是不清晰的。
机器之心报道 编辑:张倩、小舟 GPT-3 对一些问题的回答令人大跌眼镜,但它可能只是想要一句「鼓励」。 「一个玩杂耍的人总共有 16 个球,其中一半是高尔夫球,高尔夫球中又有一半是蓝色的球,请问蓝球总共有多少个?」 对于一个小学生来说,这是一道再简单不过的数学题。但看似无所不能的 GPT-3 却被这道题难住了。 如果你输入这个问题之后,直接向 GPT-3 发问:「问题的答案(阿拉伯数字)是:__?」它会「不假思索」地给出一个错误答案:8。 GPT-3:你别说准不准,你就说快不快吧。 怎么能让 GPT-
【导读】“如果人工智能是新的电力能源,那么数据就是新的煤炭能源。”由于人工智能(AI)和深度学习的快速发展,到现在为止,影响了无数的生命,改变了大千世界,这些都是我们曾经在科幻小说中梦寐以求的。不幸的是,正如我们已经看到的那样,目前世界上可消耗的煤炭资源濒临枯竭,许多 AI 应用系统几乎没有,甚至根本没有可以访问到它们的数据。
那么楼主打算从每个关键词出发从"点-线-面"的思维方式来研究对象。(既从微观研究到宏观,然后得出一个整体思路)
OpenAI 发表了新的巨大的 language model,在此之前 OpenAI 已经发表了 GPT,还有轰动一时的 GPT-2,现在到了 GPT-3(GPT-3 的论文题目为 Language Models are Few-Shot Learners)。
AI 科技评论按:随着研究者们对样本利用效率的要求日益提高,小样本学习逐渐成为了 AI 领域以及相关顶会最热门的话题之一。色列特拉维夫大学的在读博士研究生 Eli Schwarts 参加完 CVPR 2019 后,针对今年 CVPR 2019 的热点之一——小样本学习整理出了一份论文清单,供大家从 CVPR 的维度一览小样本学习在目前的研究进展。
Meta Learnig,元学习,就是能够让机器学习如何去学习(Learning to Learning),Meta学习算法能够依据自己表现的反馈信号及时地不断的调整其结构和参数空间, 使得模型能够在新环境中通过累计经验提升表现性能,举个例子就是,机器之前学习了100个task,之后机器学习第101个task的时候,会因为之前学习的100个task所具有的学习能力,学习到了如何更好的获取特征知识的方法,而让第101个task表现得更好。这里前面的100个学习任务可以是语音识别、图像识别等等,新的任务可以和前面的100个任务没有任何关联,机器会因为之前所学到的任务,所以在后面的任务学习得更好。
接着系列文章上一篇Meta Learning 1: 基于度量的方法介绍的孪生网络Siamese Network模型,本篇继续介绍更多基于度量的Meta Learning元学习方法。
转自 https://zhuanlan.zhihu.com/p/33789604 Flood Sung 12 天前 备注:本文过于偏学术分析,可能需要一定相关知识基础。 1 前言 几天前,也就是2月
---- 新智元报道 编辑:LRS 【新智元导读】十二星座捏脸,总有一款适合你! 近几个月来,基于文本描述的图像生成器算是人工智能领域里最火的玩具了。 要是用这些模型生成一些人物肖像的照片,其中的面部特征都由你来定,会怎么样? 最近有人根据自己心目中对十二星座的固有印象,对每个星座都总结了一些独特的面部特征,并按照性别为每个星座生成两张肖像照片。 结果发现DALL-E 2对于输入文本提示中的面部描述特征还原度相当之高,这也引发了作者的担忧,因为真的很难分辨这些到底是不是照片。 不过,生成的结果仅供
玩数据分析的同学一定都知道kaggle,里面有大量好玩的数据集,这次我们下载了科比近20年职业生涯中所尝试的每个投篮命中的位置和情况,由于是篮球领域的数据,可能有一些小伙伴看不懂,不过没关系,后面我都会进行简短的说明的。
一开始用这样的方法进行截图,一直是失败,最后发现问题出现在了文件命名上 ,我以日期命名其中用到了‘:’冒号,在保存文件时不能使用冒号,修改后则保存成功。 包括 ‘’ : / \ ? * < > | 都不可使用
小样本学习主要研究如何通过少量样本学习识别模型。目前学术界普遍研究的是N-way-K-shot问题,即进行N个类别的识别,每类有K个样本。训练过程以task为单位,会用到两个数据集:Support set S 和 Query set Q 。对于模型训练过程中的每个task(episode),选定M个class,每个class选择N个样本,这M x N个样本也称为support set。对于另一个从这M个class中选择的待预测样本,模型需要确定其属于哪个class,这类问题也称为M way N shot。在测试过程中,对于在训练集中从未见过的class,模型需要在M way N shot的模式下正确分类出样本的类别。常见的M和N的设置为:5 way 1 shot, 10 way 1 shot, 5 way 5 shot, 10 way 5 shot。
目前所有的 PLM 都缺其中一个或多个。很多注入知识蒸馏、数据增强、Prompt 的方法用以缓解这些缺失,但却在实际中带来了新的工作量。本文提供了一个未来的研究方向,将任务分解成几个关键阶段来实现不可能三角。
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 本文提出了 Tip-Adapter,一种可以免于训练的将 CLIP 用于下游 few-shot 图像分类的方案。 论文链接:https://arxiv.org/pdf/2207.09519.pdf 代码链接:https://github.com/gaopengcuhk/Tip-Adapter 一.研究背景 对比性图像语言预训练模型(CLIP)在近期展现出了强大的视觉领域迁移能力,可以在一个全新的下游数据集上进行 zero-shot 图像
机器之心专栏 机器之心编辑部 本文提出了 Tip-Adapter,一种可以免于训练的将 CLIP 用于下游 few-shot 图像分类的方案。 论文链接:https://arxiv.org/pdf/2207.09519.pdf 代码链接:https://github.com/gaopengcuhk/Tip-Adapter 一.研究背景 对比性图像语言预训练模型(CLIP)在近期展现出了强大的视觉领域迁移能力,可以在一个全新的下游数据集上进行 zero-shot 图像识别。为了进一步提升 CLIP 的迁移性
距离度量学习(DML)已成功地应用于目标分类,无论是在训练数据丰富的标准体系中,还是在每个类别仅用几个例子表示的few-shot场景中。在本文中,我们提出了一种新的DML方法,在一个端到端训练过程中,同时学习主干网络参数、嵌入空间以及该空间中每个训练类别的多模态分布。对于基于各种标准细粒度数据集的基于DML的目标分类,我们的方法优于最先进的方法。此外,我们将提出的DML架构作为分类头合并到一个标准的目标检测模型中,证明了我们的方法在处理few-shot目标检测问题上的有效性。与强基线相比,当只有少数训练示例可用时,我们在ImageNet-LOC数据集上获得了最佳结果。我们还为该领域提供了一个新的基于ImageNet数据集的场景benchmark,用于few-shot检测任务。
借助图像数据集,无监督图像到图像转换方法可以将给定类的图像映射到另一类的模拟图像,例如 CycleGAN 将马转换为斑马。虽然这种模型非常成功,但在训练时需要大量源类和目标类的图像,也就是说需要大量马和斑马的图像。而这样训练出来的模型只能转换斑马与马,作者认为这极大限制了这些方法的应用。
笔者所在的阿里巴巴小蜜北京团队就面临这个挑战。我们打造了一个智能对话开发平台——Dialog Studio,以赋能第三方开发者来开发各自业务场景中的任务型对话,其中一个重要功能就是对意图进行分类。大量平台用户在创建一个新对话任务时,并没有大量标注数据,每个意图往往只有几个或十几个样本。
主要内容是探索了NBA 14/15赛季常规赛MVP排行榜前四名 库里 哈登 詹姆斯 威少的投篮数据。今天重复第一个内容:用R语言的ggplot2画山脊图展示以上四人的投篮出手距离的分布。
本文分享 CVPR 2024 论文Rethinking Few-shot 3D Point Cloud Semantic Segmentation,重新审视并改正小样本3D分割任务中的问题,作者来自 ETH Zurich 等联合团队。
2021 年,提示学习(Prompt Learning)的研究浪潮兴起。而早在 2020 年,OpenAI 在 NeurIPS 2020 发表的一篇论文 Language Models are Few-Shot Learners 中就已经探讨了如何利用提示学习来提升大语言模型(Large Language Models,LLMs)的推理能力。论文中介绍了 Zero-shot、One-shot、Few-shot 三种不同的提示方法,如下图示意。
原文地址 How to Create NBA Shot Charts in Python;原文的主要内容是通过可视化的手段展示哈登2014-2015赛季的投篮数据。但是第一部分通过爬虫获取数据的过程自己还不是很理解,没有能够获得原文使用的数据集。稍显遗憾之际想到了自己之前重复过的一个kaggle案例 Kobe Brant Shot Selection —— 科比的投篮选择。数据集完全匹配,遂用科比的投篮数据来重复原文。
大模型排行榜链接地址为:https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
Red Hat JBoss Fuse十多年来一直是构建Java Web / RESTful服务的事实标准。但是,你该如何在当今以云为中心的世界中有效运行?如您所见,基础架构即代码和可扩展/容错方法对于成功部署至关重要。
最近在看ACL 2022论文的时候,发现了一篇很有意思的文章:CLIP Models are Few-shot Learners。这个文章标题马上让人联想起GPT3那篇文章Language Models are Few-Shot Learners。CLIP自2021年被提出以来一直是多模态领域研究的热点,结合对比学习和prompt这两种方法,利用文本信息进行图像的无监督训练,实现zero-shot的图像分类,也可以被应用到图片文本匹配等多模态任务中。CLIP Models are Few-shot Learners这篇文章对CLIP进行了更加深入的探索,包括如何利用CLIP通过zero-shot、few-shot的方式解决VQA任务、图文蕴含任务。下面带大家详细梳理一下这篇论文的工作。
近年来,大型语言模型(LLM)在自然语言领域(NLP)掀起了革新的狂潮,在大规模、高质量数据训练的驱动下,LLM 在多种领域都展现出卓越的性能。LLMs 的崛起不仅让我们重新审视了自然语言的处理方式,更是为多个领域注入了革新的 “新鲜血液”。值得注意的是,近期像 ChatGPT、BLOOM、Llama 这样的 LLM 正在大量涌现与飞速进化,令人叹为观止。更令人兴奋的是,国内多个优秀模型,如 Ziya-LLaMA、ChatGLM、baichuan 等,也在 LLM 的世界舞台上崭露头角。这一潮流不仅见证了 LLM 不断涌现和更新迭代,还展示了它们在医疗健康领域的巨大潜力。
领取专属 10元无门槛券
手把手带您无忧上云