之前学习了强化学习的一些内容以及推荐系统的一些内容,二者能否联系起来呢!今天阅读了一篇论文,题目叫《DRN: A Deep Reinforcement Learning Framework for News Recommendation》。该论文便是深度强化学习和推荐系统的一个结合,也算是提供了一个利用强化学习来做推荐的完整的思路和方法吧。本文便是对文章中的内容的一个简单的介绍,希望对大家有所启发。
在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN。本章内容主要参考了ICML 2016的deep RL tutorial和Dueling DQN的论文<Dueling Network Architectures for Deep Reinforcement Learning>(ICML 2016)。
本文介绍了强化学习中的马尔科夫决策过程、模型相关的强化学习、模型无关的策略评价、模型无关的策略学习和价值函数近似等概念。作者通过举例来说明这些概念在强化学习中的应用,并提出了针对这些概念的相关算法。最后,作者对强化学习未来的研究方向进行了展望,包括深度强化学习和策略搜索算法等。
DQN 发表于 NIPS 2013,在此之后 DeepMind 不断对 DQN 进行改进,首先在 2015 年初发布了 Nature 文章,提出了 Nature 版本的 DQN,然后接下来在 2015 年一年内提出了 Double DQN,Prioritied Replay,还有 Dueling Network 三种主要方法,又极大的提升了 DQN 的性能,目前的改进型 DQN 算法在 Atari 游戏的平均得分是 Nature 版 DQN 的三倍之多。因此,在本文中,我们将介绍一下各个改进的方法,并在最后给出用 Nature-DQN 的实现方法。
深度强化学习可以将深度学习与强化学习相结合:深度学习擅长从原始数据中学习复杂的表示,强化学习则使代理能够通过反复试验在给定环境中学习最佳动作。通过DRL,研究人员和投资者可以开发能够分析历史数据的模型,理解复杂的市场动态,并对股票购买、销售或持有做出明智的决策。
https://github.com/18605973470/rl-with-carla/blob/master/gym_carla.py
论文地址:https://arxiv.org/pdf/1511.06581.pdf 代码地址:https://github.com/princewen/tensorflow_practice/tree
导读 「AlphaGo 之父」David Sliver 等人最近探索的方向转向了强化学习和深度 Q 网络(Deep Q-Network)。在 DeepMind 最近发表的论文中,研究人员整合了 DQN 算法中的六种变体,在 Atari 游戏中达到了超越以往所有方法的表现。 大规模强化学习(RL)在复杂连续决策问题中最成功的方法是 Deep Q-Network 算法(DQN; Mnih et al. 2013, 2015)。它包含了 Q 学习的卷积神经网络与以及反复经验(experience replay)
选自DeepMind 机器之心编译 参与:李泽南、蒋思源 「AlphaGo 之父」David Sliver 等人最近探索的方向转向了强化学习和深度 Q 网络(Deep Q-Network)。在 DeepMind 最近发表的论文中,研究人员整合了 DQN 算法中的六种变体,在 Atari 游戏中达到了超越以往所有方法的表现。 大规模强化学习(RL)在复杂连续决策问题中最成功的方法是 Deep Q-Network 算法(DQN; Mnih et al. 2013, 2015)。它包含了 Q 学习的卷积神经网络与
中对应价值最大的动作的Q值进行更新,注意这里只是更新,并不会真的执行这个价值最大的动作。这里的更新策略(评估策略)与我们的行为策略(
这里有一份干货教程,手把手带你入门深度强化学习(Deep Reiforcement Learning),背景理论、代码实现全都有,在线领取无需安装哟!
这份Pytorch强化学习教程一共有八章,从DQN(Deep Q-Learning)开始,步步深入,最后向你展示Rainbow到底是什么。
夏乙 编译整理 量子位 出品 | 公众号 QbitAI ?DeepMind公开了一篇最近投递到AAAI 2018的新论文,这篇论文的主角,依然是这家公司四年前就开始研究的DQN,配角,依然是雅达利(A
本次分享的是用PyTorch语言编写的深度强化学习算法的高质量实现,这些IPython笔记本的目的主要是帮助练习和理解这些论文;因此,在某些情况下,我将选择可读性而不是效率。首先,我会上传论文的实现,然后是标记来解释代码的每一部分。
作为强化学习(Reinforce Learning,RL)的初学者,常常想将RL的理论应用于实际环境,以超级马里奥为例,当看着自己训练的AI逐渐适应环境,得分越来越高,到最后能完美躲避所有障碍,快速通关时,你肯定能体会到算法的魅力,成就感十足!本文不拘泥于DQN(Deep Q Learning Network)算法的深层原理,主要从代码实现的角度,为大家简洁直白的介绍DQN以及其改进方法,接着,基于Pytorch官方强化学习教程,应用改进后的DQN算法训练超级马里奥,并得到更为优秀的结果。
来源:https://zhuanlan.zhihu.com/p/25239682
【新智元导读】ICML2016最佳论文今天出炉,三篇最佳论文中,谷歌DeepMind占了两篇。新智元特邀Facebook资深研究员田渊栋对其中的《深度强化学习的竞争网络架构》进行点评。 获本年度ICML最佳的三篇论文如下: Monday – Ballroom 3+4 – 12:04 – Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang Google Inc., Tom Schaul Google Inc., Mat
DQN 算法敲开了深度强化学习的大门,但是作为先驱性的工作,其本身存在着一些问题以及一些可以改进的地方。于是,在 DQN 之后,学术界涌现出了非常多的改进算法。本章将介绍其中两个非常著名的算法:Double DQN 和 Dueling DQN,这两个算法的实现非常简单,只需要在 DQN 的基础上稍加修改,它们能在一定程度上改善 DQN 的效果。如果读者想要了解更多、更详细的 DQN 改进方法,可以阅读 Rainbow 模型的论文及其引用文献。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
这篇文章主要介绍 DQN 的三种改进:Nature DQN、Double DQN、Dueling DQN 在运筹学中的应用,并给出三者的对比,同时也会给出不同增量学习下的效果。
add agent http://coach.nervanasys.com/contributing/add_agent/index.html class Agent(object): class PolicyOptimizationAgent(Agent): class ActorCriticAgent(PolicyOptimizationAgent): presets.py class Carla_A3C(Preset): def __init__(self): Preset._
重要概念 强化学习(REinforcement Learning)(个人理解):在设定的规则下,通过训练让机器学习完成特定的任务。 强化学习的目的是学习一个策略,即一个从状态到最优行为的映射。 强化学习的目标是最大化总回报,而不是立即回报。 强化学习的主体:智能体和环境。 机器/智能体(Agent):The learner and decision-maker 环境(Environment)The thing agent interacts with, comprising everything outsi
好了,回到正题!我们都知道,深度Q网络(Deep-Q-Network)最初是应用在让机器人打游戏,状态的输入常常是前几个画面的截图,但是有时候仅仅靠前面画面的图片是无法描述整个状态的,这就导致饿了部分观测的马尔可夫决策过程(Partially-Observable Markov Decision Process,POMDP)的情况出现。不过我们不慌,学者们将循环神经网络和DQN融合,提出了Deep Recurrent Q Network(DRQN),来解决部分可观测的问题。本文,我们来一探DRQN的究竟。
近日,为了让工业界能更好地使用前沿强化学习算法,Tensorlayer 强化学习团队发布了专门面向工业界的整套强化学习基线算法库---RLzoo。(TensorLayer 是基于 TensorFlow 的延伸库,用于对基本的神经网络构建和多样的神经网络应用进行更好的支持,未来将支持更多底层计算引擎。)
安妮 编译自 ArXiv 量子位出品 | 公众号 QbitAI 近日,谷歌DeepMind团队的Meire Fortunato、Mohammad Gheshlaghi Azar、Bilal Piot等12人在ArXiv上发表了一篇新论文,主要探索了嘈杂网络(Noisy Networks, NoisyNet)以及在游戏中应用的表现。 量子位将论文中部分内容整理编译,与大家分享。 论文摘要 本文提出了NoisyNet,一种权重中增加了参数噪声的深度强化学习智能体,也证明了这种智能体策略的诱导随机性可被用来辅助有
深度学习近来是机器学习最流行的子领域,因为针对高维数据拥有强大的建模能力,它在很多不同的任务与领域都绽放了夺目的光彩,例如计算机视觉、自然语言处理与智能体学习等。深度学习模型是一种表示学习方法,即根据模型学习表示的本身,而不仅仅如同传统机器学习那样将表示映射到输出。
如图1是一个真实世界中综合的推荐系统,它首先从不同的频道中集成了不同的项目(比如视频、新闻、文章),然后对这些项目进行排序并完成综合推荐。
Github项目:https://github.com/Ceruleanacg/Personae 前八期传送门: 【系列58】强化学习在Market Making上的应用 【系列57】为什么机器学习在投资领域并不是那么好用 【系列56】特征重要性在量化投资中的深度应用 【系列55】机器学习应用量化投资必须要踩的那些坑 【系列54】因子的有效性分析基于7种机器学习算法 【系列53】基于XGBoost的量化金融实战 【系列52】基于Python预测股价的那些人那些坑 【系列51】通过ML、Time Series
选自Open AI Blog 机器之心编译 参与:黄小天、微胖 我们开源了 OpenAI 基准(https://github.com/openai/baselines),努力再现与已发表论文成绩相当的强化学习算法。接下来几个月,我们将发布算法;今天发布的是 DQN 和它的三个变体。 重现强化学习结果非常复杂:性能非常嘈杂,算法有很多活动部分,因此会有微妙漏洞,而且很多论文都没有报告所有必要的技巧。通过发布正确的实现(Know-good)(以及创造这些的最佳实践),我们希望确保强化学习的显著优势与现有算法的错
打败世界冠军?AIphaGo Zero原理? 没错,本篇文章利用100行代码展示如何利用TensorFlow框架编写一个很简单的深度强化游戏AI核心部分,希望在本篇文章里,同学们能学到DQN网络原理。再也不用担心麻麻说我学机器学习搬砖啦! Deep Q Network是DeepMind在2013年提出来的网络,是第一个成功地将深度学习和强化学习结合起来的模型,也是打败世界围棋冠军柯洁AIphaGO Zero核心原理,启发了后续一系列的工作。这些后续工作中比较有名的有Double DQN, Prior
本文为大家梳理深度学习模型近年来的重要进展,文末附梳理图~ 唐杰老师学生帮忙整理的Deep Learning模型最近若干年的重要进展。有4条脉络,整理很不错。分享一下。 track1 cv/tensor 1943年出现雏形,1958年研究认知的心理学家Frank发明了感知机,当时掀起一股热潮。后来Marvin Minsky(人工智能大师)和Seymour Papert发现感知机的缺陷:不能处理异或回路、计算能力不足以处理大型神经网络。停滞! 1986年hinton正式地提出反向传播训练MLP,尽管之前有人
机器之心专栏 作者:Cerulean 本文介绍了多个监督学习和强化学习模型在金融市场的应用,作者主要描述了多个论文的核心思想与实现,并且全面概括了其在 Github 上维护的项目。 项目地址:https://github.com/Ceruleanacg/Personae 目前,在本项目中: 实现了 4 个强化学习模型。 实现了 3 个监督学习模型。 实现了 1 个简单的交易所,提供基本的买入、持有、卖出操作(卖空仍在开发中),标的物可以是股票组合或者期货合约组合。 对于监督学习模型的数据集: 我们采用 20
近年来机器学习在各个金融领域各个方面均有应用,其实金融领域的场景是很适合强化学习应用的,但是由于金融领域真金白银的,以目前强化学习的学习效率估计愿意尝试的人不多,但是并不妨碍我们学习和了解这方面的知识。
来源:DeepHub IMBA本文约1500字,建议阅读5分钟本文推荐了5篇关于强化学习在金融领域中应用的论文。 近年来机器学习在各个金融领域各个方面均有应用,其实金融领域的场景是很适合强化学习应用的,但是由于金融领域真金白银的,以目前强化学习的学习效率估计愿意尝试的人不多,但是并不妨碍我们学习和了解这方面的知识。 Reinforcement learning in market games(arxiv 0710.0114) Edward W. Piotrowski, Jan Sladkowski, An
地址:https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf
本文,将总结一下最近使用tensorflow中遇到的两个小需求:张量排序和字符串拼接,咱们一起来学习一下,嘻嘻!
在本系列第三篇文章中,在处理DeepFM数据时,由于每一个离散特征只有一个取值,因此我们在处理的过程中,将原始数据处理成了两个文件,一个记录特征的索引,一个记录了特征的值,而每一列,则代表一个离散特征。
主动视觉跟踪(Visual Active Tracking)是指智能体根据视觉观测信息主动控制相机的移动,从而实现对目标物体的跟踪(与目标保持特定距离)。主动视觉跟踪在很多真实机器人任务中都有需求,如用无人机跟拍目标拍摄视频,智能跟随旅行箱等。要实现主动视觉跟踪,智能体需要执行一系列的子任务,如目标识别、定位、运动估计和相机控制等。
在2013年DQN首次被提出后,学者们对其进行了多方面的改进,其中最主要的有六个,分别是: Double-DQN:将动作选择和价值估计分开,避免价值过高估计 Dueling-DQN:将Q值分解为状态价值和优势函数,得到更多有用信息 Prioritized Replay Buffer:将经验池中的经验按照优先级进行采样 Multi-Step Learning:使得目标价值估计更为准确 Distributional DQN(Categorical DQN):得到价值分布 NoisyNet:增强模型的探索能力
作者:Jose A. Arjona-Medina、Michael Gillhofer、Michael Widrich、Thomas Unterthiner、Sepp Hochreiter
今天给大家介绍的是我们团队今年发表在WWW2022上的论文CrossDQN,提出了一种基于强化学习的信息流广告分配方法。这也是我个人在入职美团之后工作的主要方向。接下来我将对论文内容进行详细的介绍。
本系列已经写了二十篇了,但推荐系统的东西还有很多值得探索和学习的地方。不过在这之前,我们先静下心来,一起回顾下之前学习到的东西!
简单描述一下场景:对于一个二维的整型张量,假设每一行是一堆独立的数,但是对于每一行的数,都有一个设定好的最小值的。我们需要做的是,对于每一行,找到第一次小于最小值的位置,并将该位置起直到行末部分的数字替换为0。是不是有点抽象?我们来举个例子,假设我们的二维整型张量为:
本文首先从4个方面(张量、生成模型、序列学习、深度强化学习)追踪深度学习几十年的发展史,然后再介绍主流的26个深度学习模型。
强化学习(reinforcement learning),又称再励学习,评价学习,是一种重要的机器学习方法,在智能控制机器人及分析预测等领域有许多应用。本文将介绍强化学习的相关概念、算法及其应用实例。
领取专属 10元无门槛券
手把手带您无忧上云