分布式数据库已经流行好多年,产品非常众多,其中分布式数据库中间件使用场景最广。本文主要是总结如何基于分布式数据库中间件做数据库架构设计,以充分发挥它的分布式能力。各个中间件产品功能核心原理相同,细节上有些区别。这里仅以阿里云的DRDS为例分析,在产品架构、功能、成熟度和市场占有率上,它都比同行产品有优势。
内容来源:2017 年 12 月 21 日,驻云科技资深架构师翟永东在“云时代企业架构的搭建”进行《云上架构如何实现高性能和高可用》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。 阅读字数:2851 | 8分钟阅读 摘要 云上架构需要关注多方面的因素,本次主要讲的是高可用和高性能,从这两方面展开深度的解析如何搭建完善的云上架构。 嘉宾演讲视频及PPT回顾:http://suo.im/4sKQd8 云上架构概述 云上搭建架构不单单需要考虑到性能和可用性
我们需要给所有前台业务提供统一的账户系统,用来支撑所有前台产品线的用户资产管理,统一提供支持大并发万级TPS、亿级流水、数据强一致、风控安全、日切对账、财务核算、审计等能力,在万级TPS下保证绝对的数据准确性和数据溯源能力。
DRDS 在 TDDL 提供的数据切分和 SQL 路由能力上,强化了分布式查询,事务和水平扩容能力。
Ping++ 是国内领先的支付解决方案 SaaS 服务商。自 2014 年正式推出聚合支付产品,Ping++ 便凭借“7行代码接入支付”的极致产品体验获得了广大企业客户的认可。
作者:[美]威廉·肯尼迪(William Kennedy)布赖恩·克特森(Brian
datax内置的enumType数据类型与不同数据库间都有些差异,本文整理出相应的映射关系,在配置自定义json时可以参考做一些类型转换
https://www.cnblogs.com/grefr/p/6087942.html#top
之前做过一个项目,数据库存储采用的是mysql。当时面临着业务指数级的增长,存储容量不足。当时采用的措施是
网上对这些数据库介绍有些误导,流传各种说法,比如:流传OB基于MySQL、GaussDB 200/300 和openGauss有啥区别,没办法谁让当前国产数据库太多...
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
首先数据库技术发展的基础还是在业务推动的背景下,能够实现相关的技术保障。业务需求的提升必然会在数据量,访问量等方面有更高的要求,而映射到数据库层面就不是简单的扩容和添加资源了,我们有时候更需要弹性,需要快速实现,需要更高的性能。这些都是摆在我们面前的问题,而不仅仅是DBA团队。 所以早期的很多数据库,从一主一从,一主多从的架构,逐步演变到了读写分离,分库分表,然后就是分布式。而同时从很多层面来说,行业内的方案真是百花齐放,记得前几天还和同事聊,说如果对比一下Oracle和MySQL,
大家好,我是一哥,Doris成为MPP数据库新贵。Doris起源于百度,致力于满足企业用户的多种数据分析场景,支持多种数据模型(明细表, 聚合表), 多种导入方式(批量), 可整合和接入多种现有系统(Spark, Flink, Hive, ElasticSearch)。
标题的这个问题是我去年面天猫,在交叉面的时候一个数据库出生的大佬问的:你会怎样去设计一个数据库。
ORACLE数据库既能跑OLTP业务,也能跑OLAP业务,能力是商业数据库中数一数二的。支持IBM小机和x86 PC服务器,支持多种OS。同时有多种数据库架构方案供选择,成本收益风险也各不相同。
在上篇文章 从 SQL Server 到 MySQL (一):异构数据库迁移 中,我们给大家介绍了从 SQL Server 到 MySQL 异构数据库迁移的基本问题和全量解决方案。全量方案可以满足一部分场景的需求,但是这个方案仍然是有缺陷的:迁移过程中需要停机,停机的时长和数据量相关。对于核心业务来说,停机就意味着损失。比如用户中心的服务,以它的数据量来使用全量方案,会导致迁移过程中停机若干个小时。而一旦用户中心停止服务,几乎所有依赖于这个中央服务的系统都会停摆。
A云Polardb-x 1.0现已全面升级为Polardb-x 2.0,但Polardb-X 1.0有其自有特色,仍然有很多企业在使用Polardb-X 1.0方案。那么,当这些企业想将业务系统迁移至腾讯云时,该如何进行数据库选型?怎么样进行数据同步?其中又会涉及到哪些问题呢?
内容为慕课网的《高并发 高性能 高可用 Mysql 实战》视频的学习笔记内容和个人整理扩展之后的笔记,这一节讲述三高架构的另外两个部分切换和扩展,扩展指的是分库分表减轻数据库的压力,同时因为分库分表需要针对节点宕机问题引入了一些优化手段,而切换部分就是讲述节点宕机的切换问题的,最后我们结合复制的主从切换讲述如何搭建一个三高的架构。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/145715.html原文链接:https://javaforall.cn
第一次重构是重构一个c#版本的彩票算奖系统。当时的算奖系统在开奖后,算奖经常超时,导致用户经常投诉。接到重构的任务,既兴奋又紧张,花了两天时间,除了吃饭睡觉,都在撸代码。重构效果也很明显,算奖耗时从原来的1个小时减少到10分钟。
本文主要针对中小型互联网公司,特别适用于手机APP或者pc的后台架构,基本可以支撑5万日活。本文会对可能用到的相关技术进行技术选型的说明,以及技术的架构介绍。
加入中科软已经有了一个年头,从去年实习到今年转正,陆陆续续接触了大概四个项目。有电商类,互联网保险类,也经历过管理系统。幸运的是,这些项目都是从零开始,避免了让我去维护不堪入目的老旧系统。而这么多项目中令我印象最深刻的,就要属上一个电商项目了。这也是我接触到的真正意义的第一个微服务项目,到今天回首去看曾经的这个项目,有很多突破性地尝试,同时不可避免地也踩入了一些坑点,毕竟摸着石头过河。今天想聊聊我对上一个电商项目的反思。 项目简介 准确的说是一个第三方的电商项目,商品来源是由主流电商的http接口提供(目
Druid是Java语言中最好的数据库连接池。Druid能够提供强大的监控和扩展功能。 文档地址
cnblogs.com/huojg-21442/articles/8194348.html
随着 DT 时代的来临,数据对于企业经营决策的价值日益凸显,而企业在进行互联网+转型的过程中,如何让数据架构平滑迁移到大数据平台,对于传统业务的转型升级至关重要。企业 IT 部门该如何进行 PB 级别大数据平台的迁移规划呢,请看云智慧运维总监张克琛带来的经验分享。 提到 PB 级别的大数据解决方案市面上有很多,比较火的有 Hadoop、Spark、Kafka 等等,如果是一个新上线的系统,相信大家都能找到适合自己的方案。但“大数据”在 09 年才逐渐成为互联网信息技术的流行词汇,一个较老的系统如何平滑迁移到
DataX 是阿里云DataWorks数据集成的开源版本,在阿里巴巴集团内被广泛使用的离线数据同步工具/平台。DataX 实现了包括 MySQL、Oracle、OceanBase、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、Hologres、DRDS 等各种异构数据源之间高效的数据同步功能。
MySQL Fabric具有分片功能,在同一个分片内又可以含有多个数据库,并且由Fabric自动挑选一个适合的作为主数据库,部署成本较高,另外需要应用端来适配改造。
ETL,是英文Extract-Transform-Load的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程,是数据仓库的生命线。
在星爷的《大话西游》中有一句非常出名的台词:“曾经有一份真挚的感情摆在我的面前我没有珍惜,等我失去的时候才追悔莫及,人间最痛苦的事莫过于此,如果上天能给我一次再来一次的机会,我会对哪个女孩说三个字:我爱你,如果非要在这份爱上加一个期限,我希望是一万年!”在我们开发人员的眼中,这个感情就和我们数据库中的数据一样,我们多希望他一万年都不改变,但是往往事与愿违,随着公司的不断发展,业务的不断变更,我们对数据的要求也在不断的变化,大概有下面的几种情况:
数据分区是一种物理数据库的设计技术,它的目的是为了在特定的SQL操作中减少数据读写的总量以缩减响应时间。
大数据技术当中,在海量数据的存储环节,涉及到两个重要的概念,就是分布式数据存储与数据库,稳定高效安全的数据存储,才能为后续的计算分析环节,提供稳固的支持。今天的大数据概念解析,我们来讲讲分布式存储与数据库。
ETL(Extract-Transform-Load的缩写,即数据抽取、转换、装载的过程),对于企业或行业应用来说,我们经常会遇到各种数据的处理,转换,迁移,所以了解并掌握一种etl工具的使用,必不可少。换言之,就是用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
首先采用Mysql存储千亿级的数据,确实是一项非常大的挑战。Mysql单表确实可以存储10亿级的数据,只是这个时候性能非常差,项目中大量的实验证明,Mysql单表容量在500万左右,性能处于最佳状态。
欢迎留言,说出你常用的技术 技术选型 ---- 网关:Nginx、Kong、Zuul 缓存:Redis、MemCached、OsCache、EhCache 搜索:ElasticSearch、Solr 熔断:Hystrix ---- 负载均衡:DNS、F5、LVS、Nginx、OpenResty、HAproxy 注册中心:Eureka、Zookeeper、Redis、Etcd、Consul 认证鉴权:JWT 消费队列:RabbitMQ、ZeroMQ、Redis、ActiveMQ、Kafka ---- 日志收
在进行架构转型与分库分表之前,我们一直采用非常典型的单体应用架构:主服务是一个 Java WebApp,使用 Nginx 并选择 Session Sticky 分发策略做负载均衡和会话保持;背后是一个 MySQL 主实例,接了若干 Slave 做读写分离。在整个转型开始之前,我们就知道这会是一块难啃的硬骨头:我们要在全线业务飞速地扩张迭代的同时完成架构转型,因为这是实实在在的”给高速行驶的汽车换轮胎”。
DataX 是阿里巴巴集团内被广泛使用的离线数据同步工具/平台,实现包括 MySQL、Oracle、SqlServer、Postgre、HDFS、Hive、ADS、HBase、TableStore(OTS)、MaxCompute(ODPS)、DRDS 等各种异构数据源之间高效的数据同步功能。
以支付宝用户为例,8亿;微信用户更是10亿。订单表更夸张,比如美团外卖,每天都是几千万的订单。淘宝的历史订单总量应该百亿,甚至千亿级别,这些海量数据远不是一张表能Hold住的。事实上MySQL单表可以存储10亿级数据,只是这时候性能比较差,业界公认MySQL单表容量在1KW以下是最佳状态,因为这时它的BTREE索引树高在3~5之间。
http://mini.eastday.com/mobile/170809003639242.html
回味过去,展望未来,开始分布式数据库探索之旅,首先了解历史,本文大致梳理一下数据库发展过程,从1970年到2018年,数据库的发展过程,仅供参考,交流和学习,感谢您阅读!
日志服务最近在原有 30+ 种数据采集渠道 基础上,新增 MySQL Binlog、MySQL select 等数据库方案,仍然主打快捷、实时、稳定、所见即所得的特点。
2022年5月9日,贵州省大数据发展管理局发布《2022年省级政务云服务统筹保障项目单一来源采购公示》,预算 132576000 元。 货物或服务的说明:依托云上政务云平台向省大数据局指定的贵州省政务部门、企事业单位(提供ECS(弹性云服务器)、RDS(关系型数据库服务)、云磁盘、OSS(对象存储服务)、SLB(负载均衡服务)、DRDS(分布式关系型数据库)、IPv6网关、EIP(弹性IP地址)、裸金属服务器等云资源服务,并不断更新服务内容。 单一来源原因 1、根据《贵州省大数据发展应用促进条例》第二十六条
1、使用datax工具将mysql数据库中的数据同步到elasticsearch中。DataX目前已经有了比较全面的插件体系,主流的RDBMS数据库、NOSQL、大数据计算系统都已经接入,目前支持数据如下图:
领取专属 10元无门槛券
手把手带您无忧上云