接「R」数据操作(一)和「R」数据操作(二) 使用data.table包操作数据 data.table包提供了一个加强版的data.frame,它运行效率极高,而且能够处理适合内存的大数据集,它使用[]...例如使用id和date定位toy_tests中的记录: setkey(toy_tests, id, date) 现在提供key中的两个元素就可以获取记录了 toy_tests[....对数据进行分组汇总 by是data.table中另一个重要参数(即方括号内的第3个参数),它可以将数据按照by值进行分组,并对分组计算第2个参数。...中,by所对应的组合中的值是唯一的,虽然实现了目标,但结果中没有设置键: key(type_class_test0) #> NULL 这种情况下,我们可以使用keyby来确保结果的data.table自动将...,每条记录了钻石的10个属性,现在我们队cut列中的每种切割类型都你拟合一个线性回归模型,由此观察每种切割类型中carat与depth是如何反映log(price)的信息。
来自很久之前的官网文档。 data.table包提供了一个加强版的data.frame。它运行效率极高,而且能够处理适合内存的大数据集。它通过[ ]实现了一种自然的数据操作语法。...如果你还没有安装该包,运行: install.packages("data.table") 导入包 library(data.table) 创建一个data.table set.seed(45L)...,V3列的标准差为一个data.table DT[, ....-0.746 8 ## 9: 0.341 9 ## 10: -0.703 10 ## 11: -0.380 11 ## 12: -0.746 12 # 删除列名指定在Cols.chosen中的列...by=V2] ## V2 V1 V3 V4 ## 1: A 6 -1.49 22 ## 2: B 6 -1.49 26 ## 3: C 6 -1.49 30 # 按V2计算.SD中V3
data.table初级学习 概述 data.table对于大数据的数据整理较为便捷,很多的时候比data.frame效率更高,一般情况下结合管道符号进行计算 管道符 %in% 表示包含 %>% 表示向右传递...(data.table) 使用方法 简单操作 iris% as.data.table() class(iris) # 行数 nrow(iris) # 列数 ncol(iris)...(Species)] #返回一个data.table iris[, c("Species"), with=FALSE] #返回一组数据框 # 保留多列 iris[, ....对应原始变量名 # 第二个c()对应新变量名 setnames(iris, c("Species","Petal.Width"), c("new_Species","new_Petal.Width")) # 子集的筛选与过滤...,总体来说,data.table比data.frame更加简洁,运行更加迅速。
写在前面 本期依然由村长为大家供稿,只为填上一期最后挖的坑,话不多说进入正题。 问题提出 在上一期中,还记得我们留下的那个彩蛋吗?...:= 右边 关于 ':= lapply' 的用法,在这里小编不再赘述,如果大家对此不是很熟悉可以看这一期公众号:用data.table语句批量处理变量。...在这里通过链接中的推送的lapply使用原理,再加上stringr包中str_match这个函数的使用,截取出诊断结果中出现过的继发性醛固酮或者醛固酮,没有出现过的自动记为NA。...大猫的R语言课堂 我是大猫,一个高中读文科但却在代码、数学的路上狂奔不止的Finance Ph. D Candidate。 我是村长,一个玩了9年指弹吉他,却被代码深深吸引的博士候选人。...大猫的微信号是: iRoss2007 村长的B站主页是:http://space.bilibili.com/40771572 大猫的R语言课堂关注R语言、数据挖掘以及经济金融学。
首先看下此格式数据的生成: fread 自带的读入数据的函数,可以直接将txt,csv读入并生成相应的data.table格式数据。...as.data.table 将R对象转化为data.table格式的数据,其对象可以为列表,向量,data.frame。...setDT(x) 其直接将R对象转化为data.table数据类型,从而不改变数据地址。...接下来我们看下data.table数据类型的运算,其基础的运算既包含data.frame所有的运算方式,同时又有升级的运算: 1....3. data.table中数据函数的调用以及并行运算的加入: DT[,sum(y)] DT[,.(sum(y),sum(v))] ? 4. 自定义函数的执行,需要用{}包裹所有的命令。
大家好,又见面了,我是你们的朋友全栈君 R中的统计分析通过使用许多内置函数来执行的,这些函数大部分是R基础包的一部分,并且它们将R向量与参数一起作为输入,并在执行计算后给出结果。...平均值是通过取数值的总和并除以数据序列中的值的数量来计算,函数mean()用于在R中计算平均值,语法如下: mean(x, trim = 0, na.rm = FALSE, ...)...好啦,来综合看下实例: 输出结果为: 数据系列中的中间值被称为中位数,在R中使用median()函数来计算中位数,语法如下: median(x, na.rm = FALSE) 参数描述如下: x...na.rm – 用于从输入向量中删除缺少的值。 众数是指给定的一组数据集合中出现次数最多的值,不同于平均值和中位数,众数可以同时具有数字和字符数据。...R没有标准的内置函数来计算众数,因此,我们将创建一个用户自定义函数来计算R中的数据集的众数。该函数将向量作为输入,并将众数值作为输出,来分别看下实例: 输出结果为: 好啦,本次记录就到这里了。
今天小编给大家安利一个实用的R包data.table, 这个包可以明显的提升大文件的读取速度。下面我们就来做一个实验。...我们随机生成一个100万行10列的文件,保存到你的电脑上,文件的大小可以达到173MB。...接下来我们分别用传统的read.csv和data.table包里面的fread函数来读取这个超大的文件,然后比较两种方法的读取速度。...# 加载data.table包 library(data.table) # 数据读取性能对比分析 # Create a large .csv file set.seed(100) m 的时间为48.84秒,而利用data.table包中的fread函数来读取只需要0.47秒,速度整整提升了100倍。
导读 计算中位数可能是小学的内容,然而在数据库查询中实现却并不是一件容易的事。我们今天就来看看都有哪些方法可以实现。 ? 注:本文所用MySQL版本无限制,所列题目均来源于LeetCode。...解法1 既然是求解中位数,我们首先想到的是根据中位数的定义进行求解:奇数个数字时,中位数是中间的数字;偶数个数字时,中位数中间两个数的均值。本题不进行求解均值,而是将两个中位数全部显示。...解法3 前2种解法都是根据中位数的定义在数字排序编号上作文章,下面是一个对中位数性质更深的理解(摘抄自官方题解) 根据定义,我们来找一下 [1, 3, 2] 的中位数。...实际上,虽然3种解法均为两表关联,但由于解法3中涉及到相对更为复杂的计算,其效率竟然要比解法1和解法2中低太多。 所以,不妨想想奥卡姆剃刀原理,大道至简、大巧不工、简单之美!...注:与前一题不同,本题中如果中位数有两个,返回的是一个均值。 解法1 这一题乍一看还是挺懵的,但有了第一题解法3中的结论,似乎它就是为这一题做的铺垫:这不刚好就是提供的数字及其频率吗?
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。...> right = new PriorityQueue(); public void setN(int n) { N = n; } /* 当前数据流读入的元素个数...void insert(Integer val) { /* 插入要保证两个堆存于平衡状态 */ if (N % 2 == 0) { /* N 为偶数的情况下插入到右半边...* 因为右半边元素都要大于左半边,但是新插入的元素不一定比左半边元素来的大, * 因此需要先将元素插入左半边,然后利用左半边为大顶堆的特点,取出堆顶元素即为最大元素,此时插入右半边
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。...我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。...两个堆实现思路 为了保证插入新数据和取中位数的时间效率都高效,这里使用大顶堆+小顶堆的容器,并且满足: 1、两个堆中的数据数目差不能超过1,这样可以使中位数只会出现在两个堆的交接处; 2、大顶堆的所有数据都小于小顶堆...new Double((minHeap.peek() + MaxHeap.peek())+"")/2:new Double(MaxHeap.peek()+""); } 方法二:普通排序,找中位数时候如果奇数直接返回
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。...我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。 解题思路 我们可以将数据排序后分为两部分,左边部分的数据总是比右边的数据小。...那么,我们就可以用最大堆和最小堆来装载这些数据: 最大堆装左边的数据,取出堆顶(最大的数)的时间复杂度是O(1) 最小堆装右边的数据,同样,取出堆顶(最小的数)的时间复杂度是O(1) 从数据流中拿到一个数后...,先按顺序插入堆中:如果左边的最大堆是否为空或者该数小于等于最大堆顶的数,则把它插入最大堆,否则插入最小堆。...要获取中位数的话,直接判断最大堆和最小堆的size,如果相等,则分别取出两个堆的堆顶除以2得到中位数,不然,就是最大堆的size要比最小堆的size大,这时直接取出最大堆的堆顶就是我们要的中位数。
Python和R是数据科学生态系统中的两种主要语言。它们都提供了丰富的功能选择并且能够加速和改进数据科学工作流程。...在这篇文章中,我们将比较Pandas 和data.table,这两个库是Python和R最长用的数据分析包。我们不会说那个一个更好,我们这里的重点是演示这两个库如何为数据处理提供高效和灵活的方法。...另一方面,data.table仅使用列名就足够了。 示例3 在数据分析中使用的一个非常常见的函数是groupby函数。它允许基于一些数值度量比较分类变量中的不同值。...我们使用计数函数来获得每组房屋的数量。”。N”可作为data.table中的count函数。 默认情况下,这两个库都按升序对结果排序。排序规则在pandas中的ascending参数控制。...data.table中使用减号获得降序结果。 示例5 在最后一个示例中,我们将看到如何更改列名。例如,我们可以更改类型和距离列的名称。
以mtcars这个R自带的数据集为例,我们知道mtcars[1]的运行结果,是选择这个数据集的第一行,结果如下: ? mtcars[1,1]的运行结果,是选择第一行第一列的元素,结果如下: ?...首先,我们单独看i只有一个1的情况下是什么运行结果,为了让运行出来的代码被认定是data.table的格式,我们在j中加入.SD(不清楚.SD用途的小伙伴可以查看data.table的manual,或者查看笔者上一篇推送用...可见,在DT的i中输入一个数字和用一般的提取符号`[`只输入一个数字的结果完全一样,就是提取这个数据集中的某一行。...最后,我们将j中的1添加进去,代码与结果如下: mtcars[1, 1, 1] ?...结 果分析 从这样一段拆解当中,我们大致就可以明白为什么会出现这样的结果了,整体的运行思路就是:首先选出了第一行,而后在by中以一个变量名默认为NA的变量为基准,最后在j中生成了一个默认变量名为V1的变量
关于求解中位数,我们知道在Python中直接有中位数处理函数(mean),比如在Python中求解一个中位数,代码很简单。...) 在hive中没有直接提供相关的mean函数,但官方提供了两个UDAF,percentile和percentile_approx。...也就是说,真正的中位数只能用percentile来计算,输入需要为整数类型,使用percentile_approx(输入为浮点型)计算得到的并不是真正的中位数,也就是所说的近似中位数,经过大量数据验证,...有时候这个近似中位数和真正的中位数差别还是很大的。...如何对有小数的数据求取中位数呢? 可以把小数转换为整数,然后再求取中位数(如先✖️乘10000) sparksql中也是如此求取中位数的,赶快去试一试吧!
data.table 1、I/O性能: data.table的被推崇的重要原因就是他的IO吞吐性能在R语言诸多包中首屈一指,这里以一个1.6G多的2015年纽约自行车出行数据集为例来检验其性能到底如何,...DT[i,j,by] 如果这个过程是SQL中是由select …… from …… where …… groupby …… having 来完成的,在R的其他基础包中起码也是分批次完成的。...当整列和聚合的单值同时输出时,可以支持自动补齐操作。 当聚合函数与data.table中的分组参数一起使用时,data.table的真正威力才逐渐显露。 mydata[,....左手用R右手Python系列——数据合并与追加 长宽转换: 长宽转换仍然支持plyr中的melt/dcast函数以及tidyr中的gather/spread函数。...本篇仅对data.table的基础常用函数做一个整理,如果想要学习期更为灵活高阶的用法,还请异步官方文档。 左手用R右手Python系列——数据塑型与长宽转换
题目描述: 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。...我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。 思路: 一般这种流式数据我们都用堆处理比较好,变化小排序快....这里定义两个堆,一个小根堆,一个大根堆,一个表识符count用于指示当前数据进入堆 这里我让偶数标识符进小根堆,奇数标识符进大根堆,其实换一种进法也一样哦 这里的要点是:我们在进一个堆的同时要从这个堆里拿一条数据放到另外一个堆里...,这样可以保障两个队列的数据是平分的,另外两个顶就是中间数值,这是为啥呢?...因为两个堆一直在进行堆顶直接的相互交换,保障堆顶一直是中间字符~ 代码: int count=0; PriorityQueue minHeap=new PriorityQueue
tidyverse作为R语言数据分析中的瑞士军刀,非常好用,一个小小的缺点就是速度慢,data.table速度快,所以他们团队又开发了dtplyr,加快运行速度。...不过今天要介绍的是另一个,基于data.table的tidyverse:tidytable。 使用起来非常简单,只需要在原有函数后面加一个.即可!!!...library(tidytable) ## Warning: package 'tidytable' was built under R version 4.2.1 ## ## Attaching...语法 借助dt()函数实现对data.table语法的支持。...,详细支持的函数列表大家可以在这里[1]找到。
问题描述 给定两个大小为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的中位数。...进阶:你能设计一个时间复杂度为 O(log (m+n)) 的算法解决此问题吗? 解决方案 一种直观的方案为使用两路归并排序的思路,找到中位数,其时间复杂度度为O(m + n)。...对于题目要求的O(log (m+n)) 的复杂度,我们很容易想到是使用二分搜索的方式求解的。...[mid1] > nums2[mid2],证明第k大的数一定不在nums2[j:mid2]只中,因此该问题可以转化为find(i, mid2 + 1, k - (mid2 - j - 1))。...不需要注意的是可能出现nums1 或者 nums2用光的情况,因此为了保证不越界的前提下, mid1 = min(i + k / 2,n)- 1 mid2 = min(j + k / 2,m)- 1 因此恰好相等时不一定为找到第
R语言︱数据集分组 大型数据集通常是高度结构化的,结构使得我们可以按不同的方式分组,有时候我们需要关注单个组的数据片断,有时需要聚合不同组内的信息,并相互比较。...介绍一种按照日期范围——例如按照周、月、季度或者年——对其进行分组的超简便处理方式:R语言的cut()函数。...(iris$setosa)] #按照照setosa的大小,重排Sepal.Length数据列 四、dplyr与data.table data.table可是比dplyr以及python中的...data.table包的语法简洁,并且只需一行代码就可以完成很多事情。进一步地,data.table在某些情况下执行效率更高。...(参考来源:R高效数据处理包dplyr和data.table,你选哪个?) ?
数据流的中位数 思路:维护一个大顶堆和一个小顶堆; import heapq class MedianFinder(object): def __init__(self): ""
领取专属 10元无门槛券
手把手带您无忧上云