《天龙八部》是金庸老先生的一部经典古装武侠爱情小说,1997 年由香港无线电视台拍摄成同名影视剧,李添胜执导,黄日华、陈浩民、樊少皇、李若彤、联袂主演。该剧讲述的是面对乱世,萧(乔)峰、虚竹、段誉三人开始了非同寻常的江湖生涯,遇见了诸如天山童姥、慕容复、大轮明王、丁春秋、游坦之、四大恶人等各色高手,生死情仇、爱恨别离、民族大义在因缘际会中施展等故事。
原项目是一个Web项目,采用传统的Servlet方式,后台主要完成的工作是计算节点的坐标,将节点的坐标封装成json格式由与前台进行交互。前期阶段,从前后台的数据传输方面尝试对代码进行理解,但是原始代码运行环境未知,现有的代码在运行时会有各种错误,未果,放弃。现在直接将后台的业务处理代码抽离进行抽离。目的是形成一个最简单的可执行的布局算法效果展示的SDK
css选择器语法: http://www.w3school.com.cn/c***ef/css_selectors.asp
作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts、Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部分太少。和 EChart、Chart.js 等相比,D3.js** 的相对来说自由度会高很多,得益于 D3.js 中的 SVG 画图对事件处理器的支持**,D3.js 可将任意数据绑定到文档对象模型(DOM)上,也可以直接操作对象模型(DOM)完成 W3C DOM API 相关操作,对于想要展示自己设计图形的开发者,D3.js 绝对是一个不错的选择。
在上篇文章中(D3.js 力导向图的显示优化),我们说过 D3.js 在自定义图形上相较于其他开源可视化库的优势,以及如何对文档对象模型(DOM)进行灵活操作。既然 D3.js 辣么灵活,那是不是实现很多我们想做的事情呢?在本文中,我们将借助 D3.js 的灵活性这一优势,去新增一些 D3.js 本身并不支持但我们想要的一些常见的功能。
在二维或三维空间里配置节点,节点之间用线连接,称为连线。各连线的长度几乎相等,且尽可能不相交。
知识图谱(关系网络)可以用简单的形状和线条显示复杂的系统,帮助我们理解数据之间的联系。我们今天将介绍15个很好用的免费工具,可以帮助我们绘制网络图。
networkD3是基于D3JS的R包交互式绘图工具,用于转换R语言生成的图为交互式网页嵌套图。目前支持网络图,桑基图,树枝图 (后续相继推出)等。 关于网络图的绘制,我们之前有5篇文章,可点击查看。 Cytoscape教程1 Cytoscape之操作界面介绍 新出炉的Cytoscape视频教程 Cytoscape: MCODE增强包的网络模块化分析 一文学会网络分析——Co-occurrence网络图在R中的实现 也可以使用此文介绍的network3D绘制交互式网络图,输入数据与Cytoscape需要的数
知识图谱项目是一个强视觉交互性的关系图可视化分析系统,很多模块都会涉及到对节点和关系的增删改查操作,常规的列表展示类数据通过表格展示,表单新增或编辑,而图谱类项目通常需要关系图(力导向图:又叫力学图、力导向布局图,是绘图的一种算法,关系图一般采用这种布局方式)去展示,节点和关系的新增编辑也需要前端去做一些复杂的交互设计。除此之外还有节点和关系的各种布局算法,大量数据展示的性能优化,节点动态展开时的局部布局渲染,画布的可扩展性,样式的自定义等等诸多技术难点。目前国内使用最多的两个已开源的前端可视化框架:阿里的AntV、百度的Echarts对于关系图的支持都比较弱,不能完全满足项目中的需求。
库简介:D3Blocks是一个基于d3 javascript (d3js)的图形库,通过只需少量的Python代码就能创建出视觉上吸引人且实用的图表!
这是《数据爬取及可视化系列》的第三篇文章。 前2篇文章,可以查阅: 01基于位置的用户画像初探 02技能之谷歌Chrome爬虫 ---- 最近在结合新学的爬虫在做一些可视化的东西了,今天讲讲可视化图
超过 10k stars 和 1k fork,NativeBase 是一个广受欢迎的 UI 组件库,它为 React native 提供了几十个跨平台组件。当使用 NativeBase 时,你可以使用任何现成的本地第三方库,并且项目本身围绕着它提供了丰富的生态系统,从有用的starter-kit到可定制的主题模板。这是一个不错的入门工具包。
首先,我们需要一个HTML文件来引入D3.js库,并准备一个画布来放置我们的图表。
众多周知,图形和图表要比文本更具表现力和说服力。图表是数据图形化的表示,通过形象的图表来展示数据,比如条形图,折线图,饼图等等。可视化图表可以帮助开发者更容易理解复杂的数据,提高生产的效率和 Web 应用和项目的可靠性。
在 JS 程序中,为了实现漂亮的图形、图表和数据可视化,我们选择使用开源库。生活在数据爆炸的时代,我们开发的每一个应用程序几乎都使用或者借助数据来提升用户体验。为了帮助你轻松地为你最喜欢的应用程序添加漂亮的数据可视化,这里列出了 2019 年最好的 JavaScript 数据可视化库(排名不分先后)。
近年来,可视化越来越流行,许多报刊杂志、门户网站、新闻媒体都大量使用可视化技术,使得复杂的数据和文字变得十分容易理解,有一句谚语“一张图片价值于一千个字”。D3 正是数据可视化工具中的佼佼者,基于 JavaScript 开发,项目托管于 GitHub。从 D3诞生以来,不断受到好评,在 GitHub 上的项目仓库排行榜也不断上升。可视化越来越流行,许多报刊杂志、门户网站、新闻、媒体都大量使用可视化技术,使得复杂的数据和文字变得十分容易理解,有一句谚语“一张图片价值于一千个字”,的确是名副其实。各种数据可视化工具也如井喷式地发展,D3 正是其中的佼佼者。D3 的全称是(Data-Driven Documents),顾名思义可以知道是一个被数据驱动的文档。听名字有点抽象,说简单一点,其实就是一个 JavaScript 的函数库,主要是用来做数据可视化。
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。
原文链接:http://tecdat.cn/?p=18770 为了用R来处理网络数据,我们使用婚礼数据集。 > nflo=network(flo,directed=FALSE)> plot(nf
Update、Enter、Exit 是 D3 中三个非常重要的概念,它处理的是当选择集和数据的数量关系不确定的情况。
对于前段时间流出的QQ群数据大家想必已经有所了解了,处理后大小将近100G,多达15亿条关系数据(QQ号,群内昵称,群号,群内权限,群内性别和年龄)和将近9000万条群信息(群号,群名,创建时间,群介绍),这些数据都是扁平化的2维表格结构,直接查询不能直接体现出用户和群之间的直接或者间接关系。通过数据可视化,可以把扁平结构的数据作为点和线连接起来,从而更加直观的显示出来从而进行分析。 d3.js是一个近年来推出的基于javascript的数据展示库,全称为Data Driven Document, 在浏览器
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D3.js。 对D3来说,柱形图、散点图、折线图、饼图、弦图、力导向图、树状图等等都不在话下。总之,只要你愿意写代码,D3.js可以满足你对数据可视化的一切幻想。 今天我们以弦图为例进行介绍。 弦图 弦图主要用于表示两个节点之间的联系。两点之间的连线表示二者具有联系,线的粗细表示权重。 下面是之前做的一张电影类型
Google的TensorFlow出生的更早,用的人更多;Facebook的PyTorch用户增长更快。两家再框架之争上安营扎寨,正面对垒,都说自己的框架才是最好的语言。
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D
摘要: 如今同质化的应用越来越多,应用开发者也开始在用户体验上下功夫,比如数据可视化,将一大堆密密麻麻的数字转成图表形式,可以更直观地向用户展示数据之间的联系和变化情况,减少用户的阅读和思考时间,以便很好地做出决策;目前互联网中有很多数据可视化工具,这里只选择了30个有特色好用的推荐给大家 如今同质化的应用越来越多,应用开发者也开始在用户体验上下功夫,比如数据可视化,将一大堆密密麻麻的数字转成图表形式,可以更直观地向用户展示数据之间的联系和变化情况,减少用户的阅读和思考时间,以便很好地做出决策;目前互联网中
有幸看到了这篇关于数据可视化学习的指导文章,由于原作链接访问异常,只得从百度快照中看到原文,所以这里搬运过来,特此声明本文系【转载】,在此感谢原作者,以下为原文正文(略有删减)。
总第501篇 2022年 第018篇 知识图谱可视化可以更直观地查看和分析知识图谱的数据。本文主要介绍了美团平台在布局策略、视觉降噪、交互功能、可视化叙事、3D图谱可视化等方面的一些实践和探索,同时沉淀出了uni-graph图可视化解决方案,并支持了美团的很多业务场景,包括美团大脑、图数据库、智能IT运维、组件依赖分析、行业领域图谱等。希望能对从事知识图谱可视化方向的同学有所帮助或启发。 1 知识图谱可视化基本概念 1.1 知识图谱技术的简介 1.2 知识图谱可视化的简介 2 场景分析与架构设计 2.1
布局(Layout)可以看成是D3对图形元素的一种排布方式,在绘制柱状图时,是在横平竖直的直角坐标系下,确定矩形的左上角坐标,就可以画出随着高度变化的一系列柱子,以体现数据值的差异,而如果要画饼图呢,有一列数据[30,10,6],映射到饼图的不同楔形里,是一个个手动计算角度和初始位置么?根据图形语法,只需要将坐标系变成极坐标,一系列数据很容易对应为角度。
虽然很好用, 但是并不能直接嵌入到业务系统中, 也不能直接给客户用, 所以我找了好多也没有说直接能展示图关系的, 但是我看网上好多都说是基于D3.js就可以做, 但是我是一个后端呀, D3相对复杂, 但是需求刚在眼前还是要做的..
本文是《数据可视化实战:使用D3设计交互式图表》[1]的简要版读书笔记,通过约4000字概览如何用D3做可视化、实践从数据到图形的过程。D3是一个根据数据操纵文档的JavaScript库[2],其全称Data-Driven Documents强调了这一点。D3的功能不止于做可视化,Documents代表可以在浏览器中展现的一切,包括HTML、SVG,根据数据操纵DOM(Document Object Model)可实现非常多的效果,但通常大家通常用D3来将数据映射为可视图形。
利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包。
我写的工具能提供多少价值,将由其快速诊断内存配置文件问题的能力的大小决定。考虑到我可以利用直觉工程 来增强可视化的方法,我提出了三个成功的标准:
用户行为分析是数据分析中非常重要的一项内容,在统计活跃用户,分析留存和转化率,改进产品体验、推动用户增长等领域有重要作用。单体洞察、用户分群、行为路径分析是用户行为数据分析的三大利器。
伦敦的地铁路线图图可谓是地铁路线图的鼻祖。多年来,它形成的配色与排版方案,造就了它独特的外观和风格,但最令人惊叹的,还是其神来之笔的设计思路。
嗯,没错,PyEcharts 就是这么骚!嗯,没错,PyEcharts 就是这么骚!
你有我有全都有: 拥有头部AI能力和资源的服务商在相对成熟场景的单点技术能力日趋同质化
昨天晚上看到一个关于股票的矩形树状图 (tree map),真的太酷了,传达的信息太多了。
❖ Excel:Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。
现如今大数据已人尽皆知,但在这个信息大爆炸的时代里,空有海量数据是无实际使用价值,更不要说帮助管理者进行业务决策。那么数据有什么价值呢?用什么样的手段才能把数据的价值直观而清晰的表达出来? 答案是要提供像人眼一样的直觉的、交互的和反应灵敏的可视化环境。数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息,直观、形象地显示海量的数据和信息,并进行交互处理。 数据可视化的应用十分广泛,几乎可以应用于自然科学、工程技术、金融、通信和商业等各种领域。下面我们基于Python,简单地介绍一下适用于各个领域的几个实用的可视化库,快速带你入门!!
复杂网络分析研究如何识别、描述、可视化和分析复杂网络(点击文末“阅读原文”获取完整代码数据)。
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。您还将找到商业图形可视化库。商业图书馆的优势在于可以保证持续的技术支持和先进的性能。
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
0.说在前面1.d3.js初识2.绘制完整的柱形图3.让图表动起来4.浅析Update、Enter、Exit5.交互式操作6.作者的话
大数据时代,需要工具实现数据可视化,需要倚仗大数据可视化工具,这些工具中不乏有适用于Flash、HTML5、NET、Java、Flex等平台的,也不乏有适用于常规图表报表、金融图表、工控图表、甘特图、流程图、数据透视表、OLAP多维分析等图表报表开发的。
各个互联网公司通过大量的用户数据、信息进行统计分析,而这些大量繁杂的数据在经过可视化工具处理后,就能以图形化的形式展现在用户面前,清晰直观。随着各种数据的增加,这种可视化工具越来越得到开发者们的欢迎。 下面推荐30款可视化工具供大家选择和使用。 1.iCharts iCharts 提供了一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts 有交互元素,可以从Google Doc、Excel 表单和其他来源中获取
Earlier this month, we announced our intention to expand our 1,600-hour curriculum to 2,080 hours. That’s right — a whole working year of coding experience.
CNA 研究和应用爆炸式增长的突出原因是两个因素 - 一个是廉价而强大的计算机的可用性,使在数学、物理和社会科学方面接受过高级培训的研究人员和科学家能够进行一流的研究;另一个因素是是人类社会、行为、生物、金融和技术方面不断增加的复杂性。
“为工作使用正确的工具!” 这句话一开始听起来很简单,但在实际方面实施起来却非常复杂。 早期的初创公司发现很难选择生态系统中可用的各种工具,因为它们的数据将如何演变是非常不可预测的。 需要现代数据堆栈 在过去 10 年中,软件行业在以下方面有所增长: 计算能力:AWS、Google Cloud 等公共云提供商以标准市场成本提供巨大的计算能力。 数据源:物联网生态系统、智能设备的兴起导致每天产生的数据量呈指数级增长。2020 年,地球上的每个人每秒产生约 1.7MB 的数据。 业务利益相关者的数据素养:
领取专属 10元无门槛券
手把手带您无忧上云