作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts、Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部分太少。和 EChart、Chart.js 等相比,D3.js** 的相对来说自由度会高很多,得益于 D3.js 中的 SVG 画图对事件处理器的支持**,D3.js 可将任意数据绑定到文档对象模型(DOM)上,也可以直接操作对象模型(DOM)完成 W3C DOM API 相关操作,对于想要展示自己设计图形的开发者,D3.js 绝对是一个不错的选择。
在上篇文章中(D3.js 力导向图的显示优化),我们说过 D3.js 在自定义图形上相较于其他开源可视化库的优势,以及如何对文档对象模型(DOM)进行灵活操作。既然 D3.js 辣么灵活,那是不是实现很多我们想做的事情呢?在本文中,我们将借助 D3.js 的灵活性这一优势,去新增一些 D3.js 本身并不支持但我们想要的一些常见的功能。
对于前段时间流出的QQ群数据大家想必已经有所了解了,处理后大小将近100G,多达15亿条关系数据(QQ号,群内昵称,群号,群内权限,群内性别和年龄)和将近9000万条群信息(群号,群名,创建时间,群介绍),这些数据都是扁平化的2维表格结构,直接查询不能直接体现出用户和群之间的直接或者间接关系。通过数据可视化,可以把扁平结构的数据作为点和线连接起来,从而更加直观的显示出来从而进行分析。 d3.js是一个近年来推出的基于javascript的数据展示库,全称为Data Driven Document, 在浏览器
注:本文有点长,可以点赞?收藏后慢慢看。另外有本文未涉及的、大家觉得不错的D3.js资源教程也欢迎评论进行分享。 前言 从「年更博主冒个泡,或将开启可视化之旅 - 牛衣古柳 - 2020.08.27」
导语:今天我们带来一篇来自 Adobe 工程师 Rohit Boggarapu 的文章。他在文章中介绍了一些适合网页开发者的数据可视化和绘图工具,让你不必再花大力气与枯燥的数据抗争。部分工具不要求写代码也可以使用!
现代社会早已进入读图时代,图像在一定上程度上取代了文字,占据了主导地位。对于数据分析来说,一张清晰的可视化图表确实比纷繁复杂的数字更清晰美观。随着科技的发展以及可视化需求的急剧增大,涌现了大批的数据可视化工具,通过对比分析市面上众多的数据可视化工具之后,我们挑选了几款给大家进行参考。
数据可视化之初级篇 零编程工具 1. Tableau Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。
在现代Web开发中,数据可视化已成为展示复杂数据集的关键技术之一。D3.js(Data-Driven Documents)是一个强大的JavaScript库,用于创建动态、交互式的可视化图表。无论是简单的条形图还是复杂的地理热力图,D3.js都能提供灵活且深度的控制。本文旨在为初学者介绍D3.js的基础知识,探讨一些常见的问题及易错点,并提供解决方案和代码示例。
Tableau 是一款企业级的大数据可视化工具。Tableau 可以让你轻松创建图形,表格和地图。 它不仅提供了PC桌面版,还提供了服务器解决方案,可以让您在线生成可视化报告。服务器解决方案可以提供了云托管服务。Tableau的客户包括巴克莱银行,Pandora和Citrix等企业
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
阅读目录 D3.js — Data-Driven Documents Google Charts ChartJS Chartist.js n3-charts Ember Charts Smoothie Charts Chartkick ZingChart Highcharts JS Fusioncharts Flot amCharts EJS Chart uvCharts 几乎所有的控制面板都会用到图表,它们能够快速有效的展示复杂的统计。此外,一个好的图也可以提高你的网站的整体设计。 这篇文章为大家展示一些
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
Sankey Diagram, 也叫做桑基图,是一种展示数据流的可视化方式,一张典型的桑基图示例如下
知识图谱项目是一个强视觉交互性的关系图可视化分析系统,很多模块都会涉及到对节点和关系的增删改查操作,常规的列表展示类数据通过表格展示,表单新增或编辑,而图谱类项目通常需要关系图(力导向图:又叫力学图、力导向布局图,是绘图的一种算法,关系图一般采用这种布局方式)去展示,节点和关系的新增编辑也需要前端去做一些复杂的交互设计。除此之外还有节点和关系的各种布局算法,大量数据展示的性能优化,节点动态展开时的局部布局渲染,画布的可扩展性,样式的自定义等等诸多技术难点。目前国内使用最多的两个已开源的前端可视化框架:阿里的AntV、百度的Echarts对于关系图的支持都比较弱,不能完全满足项目中的需求。
上一篇文章「安利一些不错的D3.js资源 - 牛衣古柳 2021.06.29」的反响还不错,记得有新群友说是主管推给她文章才加过来的,也是很神奇。
ECharts 是一个基于 JavaScript 的开源可视化图表库,涵盖各行业图表,多达20多种图表和十几种组件,支持各种图表和组件的任意组合,满足各种需求,也是前端项目中大屏应用最多的。
上篇文章迄今复现过最复杂的可视化作品之「大西洋古抄本」(上)里讲到复杂交互一直是古柳的瓶颈。 链接:www.codex-atlanticus.it/#/
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
亲爱的读者,你是否也有在特定场景使用的非常便捷的软件,欢迎评论区留言给我们,和大家分享这些使工作得心应手、效率百倍的瞬间!
这里的图数据特指布局后的图数据,主要包括顶点信息(ID和坐标等)以及边信息,先前已经写过如何使用Gephi来进行数据的可视化,具体文章见:
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D3.js。 对D3来说,柱形图、散点图、折线图、饼图、弦图、力导向图、树状图等等都不在话下。总之,只要你愿意写代码,D3.js可以满足你对数据可视化的一切幻想。 今天我们以弦图为例进行介绍。 弦图 弦图主要用于表示两个节点之间的联系。两点之间的连线表示二者具有联系,线的粗细表示权重。 下面是之前做的一张电影类型
D3.js D3的全称是Data-Driven Documents(数据驱动的文档),是一个用来做数据可视化的JavaScript函数库,而JavaScript文件的后缀通常为.js,所以D3被称为D
在这篇文章中,我向大家介绍前5名最好的开源JavaScript图表库。每个站点的仪表板都是不完整的,因为他们缺少图表,所以为我们的站点找到正确的图表库是非常重要的。以下库可以帮助你在站点创建可自定义和美观的图表。 D3.js - 数据驱动的文档 D3.js是一个开源的JavaScript库,用于根据用户数据处理文档。这是一个强大的工具,通过HTML,SVG和CSS的帮助,赋予数据生命。 D3允许开发人员将任意数据绑定到DOM,然后将数据驱动的转换应用到DOM。例如:考虑一个数组数组,您可以使用它来生成一
D3.js提供了多种工具支持数据可视化的交互,其中d3.transition让简单而高效的为图像添加动画成为了可能。
爱德华·图夫特(Edward Tufte)在他的“展望信息”(Envisioning Information)一书中谈到了视觉形象被捕获在屏幕和纸张的二维平原中[1]。想探索另一种可视化数据的方法,因此寻找一种创造性的方法来激发观众的兴奋,逃离计算机屏幕的平地。诸如增强现实之类的技术通过向已经存在的内容添加层来实现这一点; 但是选择了更简单,更便宜的东西。使用一张塑料片,创造了一个数据可视化的全息幻觉。
无论来自哪个行业,世界各地的企业都开始越来越多地意识到数据驱动型决策的重要意义。数据分析目前已经成为各行各业最为关注的议题之一,企业亦开始专注于从数据中获取有价值洞察结论,旨在借此了解过去与未来的各项
D3近年来一直是 JavaScript最重要的数据可视化库之一,在创建者 MikeBostock的维护下,前景依然无量,至少现在没有能打的:
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。
原文链接:https://towardsdatascience.com/the-next-level-of-data-visualization-in-python-dd6e99039d5e
例如:如果网页中有一个数字2和元素X,D3.js库就可以将它们绑定在一起。绑定数据的两个函数为:
D3指的是Data-Driven Documents,js即Javascript,是后缀名。先看看官网上对D3.js库的定义:
从数据获得信息的最佳方式之一是,通过视觉化方式,快速抓住要点信息。另外,通过视觉化呈现数据,也揭示了令人惊奇的模式和观察结果,是不可能通过简单统计就能显而易见看到的模式和结论。
今天新来的实习生需要对部分分类文本进行多标签的检测,即根据已构建好的一、二级标签Excel文档,对众包平台人工标注的数据以及机器标注的数据进行评测。 此情此景,让我想起了曾经在实验做的文本多标签分类的工作,所以就想用Echart 或D3.js实现层级标签可视化为一个Tree的结构,方便实习生们查阅,提高工作效率。 说干就干!
最近的业余时间里,一直在研究图相关的领域,顺便构建出 feakin 图形引擎。在研究了 Mermaid、Cytoscape、Drawio/MxGraph/MaxGraph、Excalidraw 等图形库之后,大概写了两个 PoC(概念验证): 数据的处理。即将文本转换为可渲染的数据模型。即结合语法解析、图算法来对数据进行处理。 图形的渲染。即基于 Konva.js 的 Canvas 方式来渲染图形。 在这个过程中,因为研究时间比较分散,一些概念相对比较模糊。所以,便想抽空重新梳理一下其中的思路,方便于后续继
Earlier this month, we announced our intention to expand our 1,600-hour curriculum to 2,080 hours. That’s right — a whole working year of coding experience.
在开源世界中,某些库为数据可视化提供了许多可能性,包括图形或网络表示。其他库仅专注于网络图表示。通常,这些库比通用库提供更多的功能。您还将找到商业图形可视化库。商业图书馆的优势在于可以保证持续的技术支持和先进的性能。
数据可视化一直是一个很有趣的领域。许多普通人直观上难以感受的数据,如漏洞分布、实时流量分析等,通过数据可视化的手法,可以清晰地看出数据的结构特点和每一个部分之间的内在联系。 著名数据可视化库 D3.js 的部分应用 D3.js 可视化群关系,来自利用 d3.js 对大数据资料进行可视化分析 数据可视化除了常用的图表之类,与地理位置信息系统(GIS)的结合也是其中一个有趣的应用。 首先是数据的准备,要做全球的分布图,得有全网扫描的实力才行哦。HeartBleed 风波的当天晚上,ZoomEye 就给全球
在之前的文章D3.js库-2-选择元素和绑定数据中,有介绍过D3.js中的两种选择数据的方法,本部分为重复内容,温故而知新:
一、Excel Excel作为一个入门级工具,是快速分析数据的理想工具,也能创建供内部使用的数据图,但是Excel在颜色、线条和样式上课选择的范围有限,这也意味着用Excel很难制作出能符合专业出版物和网站需要的数据图。 二、Google Chart API Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。 三、D3 D3(Data Driven Documents)是支持SVG渲染的另一种Jav
选文:席雄芬 翻译:佘彦遥 姚佳灵 校对:丁雪 王方思 我爱数据——并且我把这一事实告诉了很多人。 如果你最近曾与我一起参加过聚会,我对在你的耳边喋喋不休地讲网页数据可视化工具或我
前面还有好些坑要填,不过最近古柳啃了个较复杂的、Vue 实现的可视化作品的源码,虽然还有很多内容没看,但最核心部分涉及的各组件都有跟着实现了下,如何work的也过了遍,心里有数多了,于是就想趁热简单分享下、小结下。目前实现的效果如下。 链接:www.codex-atlanticus.it/#/
俗话说的好:工欲善其事,必先利其器!一款好的工具可以让你事半功倍,尤其是在大数据时代,更需要强有力的工具通过使数据有意义的方式实现数据可视化,还有数据的可交互性;我们还需要跨学科的团队,而不是单个数据
领取专属 10元无门槛券
手把手带您无忧上云