总第501篇 2022年 第018篇 知识图谱可视化可以更直观地查看和分析知识图谱的数据。本文主要介绍了美团平台在布局策略、视觉降噪、交互功能、可视化叙事、3D图谱可视化等方面的一些实践和探索,同时沉淀出了uni-graph图可视化解决方案,并支持了美团的很多业务场景,包括美团大脑、图数据库、智能IT运维、组件依赖分析、行业领域图谱等。希望能对从事知识图谱可视化方向的同学有所帮助或启发。 1 知识图谱可视化基本概念 1.1 知识图谱技术的简介 1.2 知识图谱可视化的简介 2 场景分析与架构设计 2.1
作者丨徐阿衡 学校丨卡耐基梅隆大学硕士 研究方向丨QA系统 实践了下怎么建一个简单的知识图谱,两个版本,一个从 0 开始(start from scratch),一个在 CN-DBpedia 基础上补充,把 MySQL,PostgreSQL,Neo4j 数据库都尝试了下。自己跌跌撞撞摸索可能踩坑了都不知道,欢迎讨论。 1. CN-DBpedia 构建流程 知识库可以分为两种类型,一种是以 Freebase,Yago2 为代表的 Curated KBs,主要从维基百科和 WordNet 等知识库中抽取大量的实
知识图谱能够让机器去理解和认知世界中的事物和现象,并解释现象出现的原因,推理出隐藏在数据之间深层的、隐含的关系,使得知识图谱技术从最初谷歌用来提升搜索引擎的结果来增强用户体验,到现在已经被金融、公安、能源、教育、医疗等领域众多行业进行大量运用。
知识图谱项目是一个强视觉交互性的关系图可视化分析系统,很多模块都会涉及到对节点和关系的增删改查操作,常规的列表展示类数据通过表格展示,表单新增或编辑,而图谱类项目通常需要关系图(力导向图:又叫力学图、力导向布局图,是绘图的一种算法,关系图一般采用这种布局方式)去展示,节点和关系的新增编辑也需要前端去做一些复杂的交互设计。除此之外还有节点和关系的各种布局算法,大量数据展示的性能优化,节点动态展开时的局部布局渲染,画布的可扩展性,样式的自定义等等诸多技术难点。目前国内使用最多的两个已开源的前端可视化框架:阿里的AntV、百度的Echarts对于关系图的支持都比较弱,不能完全满足项目中的需求。
牛广林,北京航空航天大学在读博士,研究方向为知识图谱与知识推理,以第一作者发表一篇AAAI2020论文。
《海贼王》(英文名ONE PIECE) 是由日本漫画家尾田荣一郎创作的热血少年漫画,因为其宏大的世界观、丰富的人物设定、精彩的故事情节、草蛇灰线的伏笔,受到世界各地的读者欢迎,截止2019年11月7日,全球销量突破4亿6000万本^1,并被吉尼斯世界纪录官方认证为“世界上发行量最高的单一作者创作的系列漫画”^2。
本文为安全知识图谱技术白皮书《践行安全知识图谱,携手迈进认知智能》精华解读系列第六篇——威胁建模技术,重点介绍基于知识图谱的威胁建模应用。
摘要:多模态知识图谱(multi-modal knowledge graph,MMKG)是近几年新兴的人工智能领域研究热点。本文提供了一种多模态领域知识图谱的构建方法,以解决计算机学科领域知识体系庞大分散的问题。首先,通过爬取计算机学科的相关多模态数据,构建了一个系统化的多模态知识图谱。但构建多模态知识图谱需要耗费大量的人力物力,本文训练了基于LEBERT模型和关系抽取规则的实体-关系联合抽取模型,最终实现了一个能够自动抽取关系三元组的多模态计算机学科领域知识图谱。
知识图谱(knowledge graph)⼀度被专家称为“AI皇冠上的明珠”,因为知识图谱技术是⼈⼯智能技术⽅向中的重要⼀环。它不仅可以为其他⼈⼯智能应⽤提供⽀持,如⾃然语⾔处理、推荐系统等,更可以帮助⼈⼯智能系统⾃主构建和增⻓知识库,提升计算机的理解和分析能⼒,实现“认知智能”的⽬标。Gartner预测,到2025年,知识图谱技术将应⽤于80%的数据分析,⽽2021年这⼀⽐例仅为10%。 最近爆⽕的ChatGPT也是⾃然语⾔处理和理解领域的⼀个重要应⽤,虽然ChatGPT在⽣成和理解⾃然语⾔⽅⾯表现出⾊,但它的知识表⽰和推理能⼒有限,⽆法直接获取和处理结构化知识。因此,知识图谱可以为ChatGPT提供丰富的结构化知识,以增强其对话⽣成和理解的能⼒,进⽽提升对话系统的智能⽔平。
在这个信息飞速发展的时代,数据呈爆炸式增长。而互联网信息的多元性、异构性、结构松散等特点,给人们有效获取信息和知识带来了挑战。
知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建 、绘制和显示知识及它们之间的相互联系。知识图谱,是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域 以及整体知识架构达到多学科融合目的的现代理论。知识图谱,它能为学科研究提供切实的、有价值的参考。
翻译自 How Knowledge Graphs Make Data More Useful to Organizations 。更多链接查看原文。
日前,上海交通大学王新兵教授和张伟楠教授指导的 Acemap 团队知识图谱小组发布了学术知识图谱 AceKG。从官网可以看到,Acemap 知识图谱(AceKG)描述了超过 1 亿个学术实体、22 亿条三元组信息,包含六千多万篇论文、五千多万位学者、五万多个研究领域、将近两万个学术研究机构等,数据集将近 100G。 知识图谱(Knowledge Graph)是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。通过将应用数
这几天百度不断出新,让人目不暇接。在极简首页之后,《小时代3》的百度知识图谱也悄然在搜索页上线。《小时代3》大热之际,其错综复杂的人物关系并不是每个观众都能理清,百度通过掌握的知识图谱数据直接给出了清晰的网状关系,可视化、支持互动。笔者注意到这个产品的网址前缀是tupu.baidu.com,看来接下来百度必然会推出各种独立的“图谱”页面,知识图谱产品狂想曲已然奏响。 我们已从信息时代进入知识时代 如果要对互联网进行分层,它大概可以分为四层。 最底层是将实体世界比特化的“数据”。二进制存储技术、文件结构以及
👆点击“博文视点Broadview”,获取更多书讯 认知的高度决定了创造价值的高度。 企业在从创办、发展、竞争、成功到衰亡的全生命周期中,会面临复杂多样的决策场景。 然而,时代演变产生的海量、分散、实时的信息,仅靠人类个体是难以高效、准确地感知、认知和决策的。 因此,企业需要通过大数据与人工智能技术,提升对业务的智能分析与决策能力,以此提升在快速、复杂的博弈场景中的竞争力。 那么如何运用人工智能技术增强企业的认知智能呢? 在企业营销服务、设备生产运维的场景中,知识图谱与认知智能技术可以通过数据知识聚合、
本文是《知识图谱完整项目实战(附源码)》系列博文的第3篇:汽车知识图谱系统架构设计,主要介绍汽车领域知识图谱系统的总体架构设计和关键技术。
“为了支持城市复杂场景下各类需求,中科大脑知识图谱团队设计开发了一套包含本体可视化设计、数据映射、数据抽取、数据写入、图数据探索的一体化平台,而本文则详细介绍了他们的业务背景、技术选型、平台建设等内容。”
AI 科技评论按:现在的市场环境下,企业正面临着竞争逐渐加剧、人力成本增加、人员流动率加快等挑战。而随着企业经历了信息化的成熟阶段,沉淀了大量的数据,大型的企业都开始了数字化转型,它们利用前沿的技术、海量的外部数据以及内部积累的业务数据上下游的关联客户,将数据转化为专家的经验知识,从而提高工作效率和产品销量,并增强产品的用户体验。而知识图谱,则在企业的数字化转型中扮演了重要的作用。
8 月 5 日晚,GraphVite 开发者 @唐建(MILA 实验室助理教授,曾获 ICML 2014最佳论文、WWW16 最佳论文提名) 在社交平台上公布了这个图表示学习系统开源的消息。他表示,在百万节点的图上,使用该系统仅需 1 分钟左右就可以学习节点的表示。该系统的目标是为广泛的嵌入方法系列提供通用和高性能的框架,这将非常有利于图学习算法的研究与部署。雷锋网 AI 开发者将其具体介绍及相关地址编译如下。
导读 知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪方面的应用呢? 目录 1. 什么是知识图谱? 2. 知识图谱的表示 3. 知识图谱的存储 4.
随着“互联网+”时代的到来,知识图谱被广泛应用于各大行业。在金融、医疗、教育、电商、能源等行业中,知识图谱都发挥了重要的作用。 在这些领域中,企业的业务数据就是企业中重要的资源之一。知识图谱将数据资产进行可视化呈现,可以帮助企业进行全局化管控、优化资源配置、提高工作效率。那么,知识图谱数据开发是什么?主要内容有哪些呢?
机器之心发布 机器之心编辑部 12 月 18 日,在世界人工智能大会发起的 AIWIN 抗新冠人工智能挑战赛的颁奖典礼上,由天士力国际基因网络药物创新中心公司研发的、包含新冠文献智能分析功能的 「星斗云生物医学文献全息智能管理平台」脱颖而出,获得知识图谱类比赛的冠军,并荣获「抗新冠,助科研,AI 赋能者」称号。 平台链接:http://literature.tasly.com/covid19 在分享现场,天士力基因网络公司的数据总监李旭博士介绍称,天士力的星斗云平台基于多维度生物大数据(海量组学与药物数据
作者:李文哲 摘自:普惠大数据中心 导读 知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪方面的应用呢? 目录 1. 什么是知识图谱? 2. 知识图谱的表示
本期微软ATP特邀微软首席算法工程师Julia老师带大家见证魔法的诞生:看看爆火的ChatGPT如何好玩又有趣,与微软开源工具SmartKG一同生成《哈利波特》的人物及其关系的可视化图谱!(文末含详解视频哟)
面向垂直行业,结合专家知识、多源异构的碎片化知识和组织智能,引领从大数据分析到大知识工程进而大智慧系统的研发和落地应用。构建行业知识图谱,实现智能推理与知识服务,推进多机多人多任务的人机协同,开发新一代知识工程的技术体系和系统平台,服务搜索、推荐、规划、对话机器人等领域的情景感知和人机协同。
近两年来,随着Linking Open Data等项目的全面展开,语义Web数据源的数量激增,大量RDF数据被发布。互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web)。在这个背景下,Google、百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Graph、知心和知立方,来改进搜索质量,从而拉开了语义搜索的序幕。 知识图谱的表示和本质 正如Google的辛格博士在介绍知识图谱时提
A knowledge graph for Chinese cookbook(中式菜谱知识图谱),可以实现知识图谱可视化和知识库智能问答系统(KBQA)
知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。
首先,夹带点个人私货嘻嘻~ 基于知识图谱的广州革命历史数字图书馆:http://gzknowledge.cn
近日,Llama2正式发布了商用化的开源许可,效果可以媲美GPT-3.5,这将极大地推动大模型的开源商业生态的落地与发展。猎豹CEO傅盛第一时间表态,对大模型应用创业来说是极大利好。
导读: 美国国防部长卡特曾赴硅谷招募顶尖科技人才。近年来的信息大爆炸使得五角大楼不得不将目光聚焦硅谷,以打击反恐。神秘的大数据平台Palantir就是美国CIA、FBI等寻求的合作对象。Palant
2020年2月11日,世界卫生组织宣布了新型冠状病毒肺炎官方正式命名为 COVID-19,21日国家卫健委决定与世界卫生组织保持一致,中文名称不变。随着关于新型冠状病毒病毒疫情的不断发展,有关疫情的各类信息也在不断更新。OpenKG 紧随疫情发展,继续发布新领域的新冠知识图谱,同时对已经发布的图谱进行持续不断的更新。
点击公众号右下角合作转载->联系我,即可加入我的个人微信,共同探讨交流,以及入交流群(记得备注入群)!
最近读者想让我多发点爬虫文章,实在是时间原因,让各位就等了,我一口气,继续研究字体反爬策略,本文是基于天眼进行初探,后文待续。
此图由作者使用本文分享的项目生成。几个月前,基于知识的问答(KBQA)还只是新奇事物。如今,对于任何人工智能爱好者来说,使用检索增强生成(RAG)实现KBQA已经轻而易举。看到自然语言处理领域的可能性如此迅速地扩展,令人着迷,而且每天都在变得更好。在我的最后一篇文章中,我分享了一种递归的RAG方法,用于根据大量文本语料库回答复杂查询的多跳推理式问答实现。
自从 Roam Research 以来,开启了双向链接的狂潮。如今,出现了很多双向链接笔记软件,比如,Obsidian、Logseq,一些其他类别的笔记软件和文档甚至写作软件也逐步加入了双向链接功能。比如,Notion、FlowUs息流、Capacities 等。
今日介绍的是Alberto Santos 最新发表在《自然生物技术》上的文章 ” A knowledge graph to interpret clinical proteomics data”. 针对生物医学数据数量大、种类丰富而带来的数据整合困难,该工作提出了一个开源的临床知识图谱平台CKG(Clinical Knowledge Graph), 该平台结合了统计和机器学习算法,加速了典型蛋白质组学工作流程的分析和解释。相比于其他解决方案,CKG平台显得更加友好,将一系列数据库和科学文献信息与omic数据整合到一个易于使用的工作流中,显著增强了科学研究和临床实践的能力。
当今,数字化浪潮席卷全球,数字经济正在成为全球可持续增长的引擎。据 IDC 预测,到 2023 年,数字经济产值将占到全球 GDP 的 62%,全球进入数字经济时代。 愈加复杂的数据挑战 在中国,数字经济加速发展,以 2020 年为例,数字经济是 GDP 增速的 3 倍多。为促进数字经济更好更快发展,国家一方面提出加快培育数据要素市场,激活数据要素潜能,聚焦数据价值释放;另一方面,出台了《数据安全法》和《个人信息保护法》,满足数字经济时代和社会发展的迫切需求,为数据安全保障和个人权益保护奠定基础。 在 5G
互联网的出现为大量内容创建者打开了创造内容产出信息的大门。因此,现在网络上存在大量高质量的用户生成内容。为了帮助计算机对这些文档内容有更好的理解,我们需要一种有效的方式来组织和表示这些数据。针对这个问题,人们认为可以把数据中隐藏的知识用图结构的形式进行表示,于是基于语义网概念提出了知识图谱来解决这个问题。
数据获取 基于自然语言处理技术的实体抽取(中文命名实体识别平台如TLP、HanLP等均提供了不错的接口),当然也可以根据项目需求采用传统的机器学习或深度学习模型进行抽取、特定领域的新词发现等(难度较高、而且不完全适用,依领域而定) 人工非结构化数据抽取(众包标注平台)、人工辅助修正 以构造的实体为出发点在相关的平台爬虫爬取结构化数据作为补充,可重复迭代 人工非结构化数据抽取 其他团队已有的研究成果、数据库数据(本体对齐) 本体建模 基于protege开源工具(https://protege.stanford
👆点击“博文视点Broadview”,获取更多书讯 《梦华录》是最近一段时间讨论度颇高的一部电视剧,豆瓣评分一度高达8.8分,是近些年来评分较高的一部古装影视剧。其制作相对精良,画面精美,主要人物的性格特色明显,角色鲜明。并且,这部剧的内容本身当属“披着古装的现代都市剧”,许多情节都能引起人们的共鸣。 不过,今天我们不是来聊剧情的,而是想借这部剧来谈谈知识图谱。从有意思的事情中学习,才能高效地学为所用嘛! 众所周知,知识图谱是由实体和关系组成的网状结构的知识表示。 最新的研究表明,人脑就是通过知识与知识
建议查看原文:https://mp.weixin.qq.com/s/nURcYKN6vRBKjbMXAUbEng
开源项目简介 一个较为完善的图可视化引擎,支持自定义的可视化效果,集成多种经典网络布局算法,社区发现算法,路径分析算法,方便使用人员或开发者快速构建自己的图可视化分析应用。应用于知识图谱可视化, 一、开源项目简介 一个较为完善的图可视化引擎,支持自定义的可视化效果,集成多种经典网络布局算法,社区发现算法,路径分析算法,方便使用人员或开发者快速构建自己的图可视化分析应用。 应用于知识图谱可视化,复杂网络可视化分析,关系图可视化,网络拓扑图,布局算法,社区发现算法等可视化场景。可以作为 network,grap
本文是《知识图谱完整项目实战(附源码)》系列课程的学习指引部分,主要是对《知识图谱完整项目实战》的课程特色、章节设置、关键技术和主要内容做一个简介,目的是让大家对本课程有一个系统性的认知。
由深度学习掀起的这波 AI 浪潮极度依赖数据,经过 10 年的发展,深度学习在一些场景应用上已经面临瓶颈。业内有一种声音得到了大量认同:人工智能的进一步发展与突破,需要从感知智能向认知智能的突破,知识图谱能有效从数据中挖掘出知识,以更具可解释性的 AI 指导人类在更多复杂场景中的智能决策和行动。
本文为安全知识图谱技术白皮书《践行安全知识图谱,携手迈进认知智能》精华解读系列第八篇,介绍了基于知识图谱的安全风险融合分析。
论文为A Survey on Knowledge Graphs: Representation, Acquisition and Applications,发表日期2020年,论文PDF,点击链接。
原文链接:https://github.com/fighting41love/funNLP
领取专属 10元无门槛券
手把手带您无忧上云