没玩过图像缩放都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。
👆点击“博文视点Broadview”,获取更多书讯 深度学习伴随着大数据与云计算技术的崛起而快速发展起来,并在计算机视觉、语音等感知领域迅速取得成功。相对于传统机器学习,深度学习的算法设计更加灵活,可以显著提升针对感知类问题的效果。 随着算力及分布式工程能力的进一步提升,深度学习的参数规模越来越大。可以说,参数越多,模型对知识的理解就越深刻。而深度学习模型也从传统的针对单一任务,比如文本识别、物品识别、语音识别等,向多任务处理发生转移,我们称这种一个模型可以同时处理文本识别与理解、图片识别与理解,实现跨领
大型多模态模型近年来取得了显著进展,在包括图像和视频理解、数字代理开发[53]和机器人技术[24]在内的多个领域表现出卓越性能。要理解和处理广泛任务和复杂场景的必要性凸显了视觉编码器的重要性,而视觉编码器主要是指Vision Transformer。然而,ViT的二次空间复杂性和过多的视觉标记输出限制了其在多样和高分辨率任务中的应用。过多的视觉标记导致大型语言模型的计算负担大幅增加,远远超过了视觉编码器中二次空间复杂度引起的计算成本。这种视觉标记的冗余不仅牺牲了效率,还阻碍了视觉信息的有效提取[31;11]。尽管提出了一系列方法(表1;[31;27;49])来修正ViT的二次空间复杂度,但它们未能解决视觉标记冗余的关键问题[5;28]。
伴随着人类社会历程的不断向前推进,先进的科技就一直承载着人类社会的进步,特别是近年来日渐成熟的AI技术,深远地改变了我们熟悉的各个领域。我们公众号时刻紧跟当前社会发展潮流,考虑到,图像处理技术作为人工智能领域中计算机视觉(CV)的重要基础知识,同时可能也是粉丝朋友们感兴趣的地方,为此,小编决定新开一个专栏——opencv图像处理,期待能够帮助更多想要学习AI技术的小伙伴们,当然,这些知识对于大学三四年级的同学也非常有用哦,期待能够带给大家更多的快乐,我们,一直在前行。
在AI近期的发展中越来越关键,作为开发多功能通用助手的基础元素。然而,这些方法建立在粗糙的图像级对齐上,这在细粒度理解(如区域描述和推理)方面存在不足。为此,Peng等人(2023年);Chen等人(2023年);You等人(2023年)整合了定位能力,并在对话中解锁了参照能力,即用户可以指向物体或区域作为输入,模型以边界框的空间坐标回应。这一进步使MLLMs能够执行需要详细视觉理解的任务,是该领域的重要进展。
存在问题: 搞视频编解码的童鞋对此深刻理解,但是好多小伙伴在andriod或其他嵌入上做启动动画时候图像是如何转化存在一定的疑惑。 解决方案: 针对这些问题我们来简单了解了解。 在视频等相关的应用中,YUV是一个经常出现的格式。本文主要以图解的资料的形式详细描述YUV和RGB格式的来由,相互关系以及转换方式,并对C语言实现的YUV转为RGB程序进行介绍。 人类眼睛的色觉,具有特殊的特性,早在上世纪初,Young(1809)和 Helmholtz(1824)就提出了视觉的三原色学说,即:视网膜存在三种视锥细胞
今天要介绍的是NaViT,这是一种适用于任何长宽比以及分辨率的Transformer模型。
为了实现高精度的区域级多模态理解,本文提出了一种动态分辨率方案来模拟人类视觉认知系统。
作为将模糊的图像变清晰的神奇技术,图像超分辨率技术在游戏、电影、相机、医疗影像等多个领域都有广泛的应用。在这篇文章中,微软亚洲研究院的研究员们为你总结了图像超分辨率问题中的主流方法、现存问题与解决方案。微软亚洲研究院在图像超分辨率领域的相关技术也已在顶级会议发表,并转化入 PowerPoint 产品中,我们将在后续文章中为大家解读。
1、halcon软件提供的是快速的图像处理算法解决方案,不能提供相应的界面编程需求,需要和VC++结合起来构造MFC界面,才能构成一套完成的可用软件。 2、机器视觉在工业上的需求主要有二维和三维方面的 二维需求方面有:⑴识别定位;(2)OCR光学字符识别;(3)一维码、二维码识别及二者的结合;(4)测量类(单目相机的标定);(5)缺陷检测系列;(6)运动控制,手眼抓取(涉及手眼标定抓取等方面) 三维需求方面:(1)摄像机双目及多目标定(2)三维点云数据重构 3、要成为一名合格的机器视觉工程师必须具备以下三个方面的知识 (1)图像处理涉及以下几大领域: A、图像处理的基本理论知识(图像理论的基础知识) B、图像增强(对比度拉伸、灰度变换等) C、图像的几何变换(仿射变换,旋转矩阵等) D、图像的频域处理(傅里叶变换、DFT、小波变换、高低通滤波器设计) E、形态学(膨胀、腐蚀、开运算和闭运算以及凸壳等) F、图像分割(HALCON里的Blob分析) G、图像复原 H、运动图像 I、图像配准(模板匹配等) J、模式识别(分类器训练,神经网络深度学习等) 比较好的参考书籍有 经典教材:冈萨雷斯的《数字图像处理》及对应的MATLAB版 杨丹等编著《MATLAB图像处理实例详解》 张铮等编著《数字图像处理与机器视觉——Visual C++与MATLAB实现》
多模态大型语言模型(MLLMs)在视觉语言理解、视觉推理、视觉交互和定位方面取得了迅速发展。大多数MLLMs采用预训练的大型语言模型(LLMs)作为基础架构来处理连接的视觉和语言嵌入。以LLaVA [3]作为代表作品,它采用低分辨率(, 等)图像作为输入,并通过MLP投影器将视觉嵌入与文本模态对齐,然后进行指令调整。LLaVA的架构已被后续工作广泛采用,并已应用于各种视觉任务,包括检测、分割和视频理解。
最近,来自南洋理工的华人团队基于Fuyu-8B打造出了80亿参数的多模态大模型OtterHD。
赶快去检查/配置环境变量,看看有没有把opencv_world+版本号d.dll所在路径到系统环境变量path中去,如果没有问题,重启VS即可
今年 2 月初,Sora 的发布让 AI 社区更加看到了基础扩散模型的潜力。连同以往出现的 Stable Diffusion、PixArt-α 和 PixArt-Σ,这些模型在生成真实图像和视频方面取得了显著的成功。这意味着开始了从经典 U-Net 架构到基于 Transformer 的扩散主干架构的范式转变。
近期,多模态大型语言模型(MLLMs)因其能够理解和生成受视觉输入影响的语言而受到了广泛关注。这些模型融合了视觉和文本数据,使得应用范围涵盖了图像字幕生成、视觉问答和视频分析等众多领域。尽管取得了进展,但许多MLLM在有效结合高分辨率和长时程视觉输入与复杂的语言理解方面,同时保持简洁和高效性方面仍面临挑战。
paper: https://www4.comp.polyu.edu.hk/~cslzhang/paper/LPTN-cvpr21-paper.pdf
自监督学习(SSL)在机器学习中代表了转变性的飞跃,通过利用未标记数据来进行有效的模型训练[3, 4, 20, 22, 31, 32, 33, 34]。这种学习范式得益于大规模数据集,以学习丰富表示用于小样本学习[8]和迁移学习[13, 23]。互联网上大量的未标记数据激发了对深度神经网络模型在大数据集上训练的需求。目前,SSL的成功通常需要在高性能计算集群(HPC)[8, 11, 17]上训练数周。例如,iBOT [47]在16个V100上训练了193小时,用于ViT-S/16。这些计算不包括在开发SSL框架时测试不同假设所需要的时间,这些假设需要在ImageNet-1K[36]的适当规模上进行测试,ImageNet-1K拥有120万个样本,并且需要相当数量的迭代。因此,高效的预训练配方被高度期望以加速SSL算法的研究,例如,超参数调整和新算法的快速验证。为了减少训练时间,一些研究人员在ImageNet-1K[36]的子集上训练他们的模型,例如10%的样本[3]。然而,当模型扩展到大型数据集时,可能会存在性能差距,即在小数据集上表现成熟的模型可能无法处理复杂问题上的多样性。
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 机器之心 授权 本文详细解读了 Imagen 的工作原理,分析并理解其高级组件以及它们之间的关联。 近年来,多模态学习受到重视,特别是文本 - 图像合成和图像 - 文本对比学习两个方向。一些 AI 模型因在创意图像生成、编辑方面的应用引起了公众的广泛关注,例如 OpenAI 先后推出的文本图像模型 DALL・E 和 DALL-E 2,以及英伟达的 GauGAN 和 GauGAN2。 谷歌也不甘落后,在 5 月底发布了自己的文本到图像模型 Imagen,看
选自assemblyai 作者:Ryan O'Connor 机器之心编译 机器之心编辑部 本文详细解读了 Imagen 的工作原理,分析并理解其高级组件以及它们之间的关联。 近年来,多模态学习受到重视,特别是文本 - 图像合成和图像 - 文本对比学习两个方向。一些 AI 模型因在创意图像生成、编辑方面的应用引起了公众的广泛关注,例如 OpenAI 先后推出的文本图像模型 DALL・E 和 DALL-E 2,以及英伟达的 GauGAN 和 GauGAN2。 谷歌也不甘落后,在 5 月底发布了自己的文本到图像模
Imagen通过创新的设计,摈弃了需要预训练视觉-语言模型的繁琐步骤,直接采用了T5等大规模语言模型作为文本编码器,与扩散模型有机结合,完成了从文本到图像的直接关联映射。
卷积神经网络可以通过深度网络架构和给定的输入样本自动学习特征。然而,所获得的模型的鲁棒性在不同的场景中可能具有挑战性。网络架构的差异越大,有利于提取更多的互补结构信息,从而增强获得的超分辨率模型的鲁棒性。
知识蒸馏系列文章继续更新啦!在上一篇文章中,我们介绍了三类基础知识蒸馏算法,今天我们一起来学习知识蒸馏的迁移学习应用。
efficientNet的论文原文链接:https://arxiv.org/pdf/1905.11946.pdf
一位从皮克斯辞职又跑去读博的小哥Vavilala,最近就在研究让AI辅助人类原画师设计怪物这件事。
机器之心原创 作者:Angulia 参与:王灏、hustcxy、吴攀 最近,谷歌发布了一种把低分辨率图像复原为高分辨率图像的方法,参见机器之心文章《学界 | 谷歌新论文提出像素递归超分辨率:利用神经网络消灭低分辨率图像马赛克》。与最先进的方法相比,这篇论文提出了一种端到端的框架来完成超分辨率任务。它由两个卷积神经网络组成,一个是描述低分辨率图像骨架的优先网络(prior network),一个是用于优化细节特征的调节网络(conditioning network)。这种方法强调了细节特征恢复上的提升,并以
图像分辨率是一组用于评估图像中蕴含细节信息丰富程度的性能参数,包括时间分辨率、空间分辨率及色阶分辨率等,体现了成像系统实际所能反映物体细节信息的能力。相较于低分辨率图像,高分辨率图像通常包含更大的像素密度、更丰富的纹理细节及更高的可信赖度。
2.扩散模型与Diffusion Transformer,组合成强大的信息提取器 OpenAI讲Sora是一个Diffusion Transformer,这来自伯克利学者的工作Diffusion Transformer (摘取大佬原文https://blog.csdn.net/qq_44681809/article/details/135531494):“采用Transformer的可扩展扩散模型 Scalable diffusion models with transformers”[2],整体架构如下:
efficientNet的论文原文链接: https://arxiv.org/pdf/1905.11946.pdf
图像识别领域近年来取得了巨大进步,这得益于像AlexNet ,ResNet ,ViT 和Swin家族这样的突破性架构。这些架构擅长处理像ImageNet [5]这样的数据集,这些数据集主要包含分辨率低于一百万像素的自然图像。然而,许多关键应用依赖于对高分辨率图像的分析,以提取有关感兴趣目标的复杂细节。
这是有关创建自定义可脚本渲染管道的系列教程的第13部分。这次,我们将添加各种用于颜色分级的工具。
在本文中,作者提出了将Swin Transformer缩放到30亿个参数的技术 ,并使其能够使用高达1536×1536分辨率的图像进行训练。通过扩大容量和分辨率,Swin Transformer在四个具有代表性的视觉基准上创造了新的记录:ImageNet-V2图像分类的84.0%top-1 准确度,COCO目标检测上的63.1/54.4box / mask mAP ,ADE20K语义分割的59.9 mIoU ,以及Kinetics-400视频动作分类的86.8%top-1 准确度。目前,视觉模型尚未像NLP语言模型那样被广泛探索,部分原因是训练和应用中的以下差异:
该论文指出识别每张图片所需要的最小分辨率是不同的,而现有方法并没有充分挖掘输入分辨率的冗余性,也就是说输入图片的分辨率不应该是固定的。论文进一步提出了一种动态分辨率网络 DRNet,其分辨率根据输入样本的内容动态决定。一个计算量可以忽略的分辨率预测器和我们所需要的图片分类网络一起优化训练。在推理过程中,每个输入分类网络的图像将被调整到分辨率预测器所预测的分辨率,以最大限度地减少整体计算负担。
缺陷检测是工业产品处理中的一项重要任务。当前,已经有很多基于计算机视觉技术的检测方法成功应用于工业领域并取得了较好的检测结果。然而,受限于类间表面缺陷的内在复杂性,使得实现完全自动的缺陷检测仍然面临巨大挑战。虽然,类间缺陷包含相似的部分,但是缺陷的表面仍然存在较大的不同。为了解决这个问题,论文提出了一种金字塔特征融合与全局上下文注意力网络的逐像素表面缺陷检测方法,并命名为PGA-Net。在这个框架中,首先从骨干网络提取多尺度特征。然后,使用金字塔特征融合模块,通过一些有效的跳连接操作将5个不同分辨率的特征进行融合。最后,再将全局上下文注意模块应用于相邻分辨率的融合特征,这使得有效信息从低分辨率融合特征图传播到高分辨率融合特征图。另外,在框架中还加入边界细化模块,细化缺陷边界,提高预测结果。实验结果证明,所提方法在联合平均交点和平均像素精度方面优于对比方法。
Android音视频——编码介绍 Android音视频——相关介绍 相信不少小伙伴们工作一段时间都想如何进阶?很多一直做的都是应用层的APP开发,实现的基本都是UI效果,动画,机型适配,然后集成第三方的lib进行推送,支付,第三方登录,地图等的功能等等需求,如何学一点更深层次的东西?
近期多模态大模型(MLLM)在文本中心的VQA领域取得了显著进展,尤其是多个闭源的例如GPT4V和Gemini,甚至在某些方面展现了超越人类的能力。但是开源模型的性能还远远落后于闭源模型,最近许多开创性的研究例如MonKey、LLaVAR、TG-Doc、ShareGPT4V等已开始关注指令微调数据不足的问题,尽管这些努力取得了显著的效果,但仍存在一些问题,图像描述数据和VQA数据属于不同的领域,图像内容呈现的粒度和范围存在不一致性。此外,合成数据的规模相对较小,使得MLLM无法充分发挥潜力。
本是一名佛性型吃鸡选手,自从被三个妹子带着躺尸吃鸡之后,便立志要成为一名吃鸡高手,一大早便沉迷于各大网站的吃鸡直播中,正看到决赛圈激动人心的时刻,直播花屏了?然后游戏结束了?我的天,我是谁?我在哪?我错过了什么?
今年以来,苹果显然已经加大了对生成式人工智能(GenAI)的重视和投入。此前在 2024 苹果股东大会上,苹果 CEO 蒂姆・库克表示,今年将在 GenAI 领域实现重大进展。此外,苹果宣布放弃 10 年之久的造车项目之后,一部分造车团队成员也开始转向 GenAI。
半年多来,Meta 开源的 LLaMA 架构在 LLM 中经受了考验并大获成功(训练稳定、容易做 scaling)。
最近笔者在项目中做技能模块的时候,用到外包给的一系列技能图标,但发现外包给到的图标分辨率、尺寸不一致,所以想到之前学校里,软件设计与交互课上有提到PS可以将一系列动作操作记录下来从而实现批量编辑,于是实践了一下,现将此记录下来,分享给读者们。
距离OpenCV 3.0发布已逾三年半了,终于在2018-11-20,OpenCV 4.0正式版强势来袭!至此开始OpenCV 4.x的王朝!
SVG(Scalable Vector Graphics)是一种基于XML的矢量图像格式,它可以在不失真的情况下无限放大。然而,不是所有的设备和应用都支持SVG格式,而PNG(Portable Network Graphics)格式在互联网上得到了广泛的支持,它支持透明度并且无损压缩。因此,有时我们需要将SVG文件转换为PNG文件,以便在更多的环境中使用。
本文提出一种非常简单的极限分辨率的风格迁移框架URST,首个可以处理任意高分辨率(比如
自从Alex net在2012年ImageNet挑战赛中获胜后,卷积神经网络就在计算机视觉领域中无处不在。它们甚至在自然语言处理中也有应用,目前最先进的模型使用卷积运算来保留上下文并提供更好的预测。然而,与其他神经网络一样,设计cnn网络的关键问题之一是模型缩放,例如决定如何增加模型的尺寸,以提供更好的准确性。
超分辨率(SR)方法指的是从低分辨率输入生成高分辨率图像或视频的过程。这些技术几十年来一直是研究的重要课题,早期的 SR 方法依赖于空间插值技术。虽然这些方法简单且有效,但上转换图像的质量受到其无法生成高频细节的能力的限制。随着时间的推移,引入了更复杂的方法,包括统计、基于预测、基于块或基于边缘的方法。然而,最显著的进步是由新兴的深度学习技术,特别是卷积神经网络(CNNs)带来的。尽管卷积神经网络(CNNs)自 20 世纪 80 年代以来就存在,但直到 20 世纪 90 年代中期,由于缺乏适合训练和运行大型网络的硬件,它们才开始在研究社区中获得广泛关注。
Topaz Gigapixel AI是一款智能图像放大软件,可以将低分辨率的图片放大至高分辨率,同时保持图像质量和细节的清晰度。这个软件采用了人工智能技术,并使用深度学习算法来提升图像的质量和细节。
真实世界的图像超分辨率(SR)是图像处理领域的一项基本任务,旨在增强低分辨率(LR)图像,生成对应的高分辨率(HR)图像。尽管近年来该领域取得了重大进展,但复杂现实场景的处理仍然面临着持久的挑战。利用图像先验是解决现实世界SR问题的常用策略,而最近出现的文生图扩散模型显示出基于用户提供的提示生成高质量图像的卓越能力。这些模型不仅具有强大的图像先验,而且能够以语言的形式对人类指令做出精确的反应。这展示了连接低级图像处理和高级抽象认知的可能性。传统的图像超分辨率技术坚持自下而上的方法,主要集中于局部内容和直接像素级处理。这些方法在把握整体图像上下文方面表现出固有的局限性,往往无法恢复严重退化但语义上至关重要的细节。此外,考虑到LR图像的病态性质,有可能引入语义错误的纹理。为了应对这些挑战,有必要为 SR 模型注入“认知”能力。因此,本文提出了一种先进的 SR 方法,称为认知超分辨率(CoSeR),它与人类在图像感知中采用的自上而下的认知过程一致。它从认知嵌入的生成开始,这是一种封装了 LR 图像总体理解的表示,包含场景语义和图像外观。这种认知嵌入能够精确地利用嵌入在预训练的文生图模型中的隐含先验知识,从而以类似于人类专业知识的方式增强恢复图像细节的能力。先前的工作使用分割图来提供语义,然而,获取现实世界LR图像的理想的分割图仍然很困难,且语义分割受限于预先定义的类别,限制了它在开放世界场景中的适用性。除了隐式地利用扩散先验,本文还显式地利用了图像先验。本文提出了一种新的方法,使用来自 LR 输入的认知嵌入,通过扩散模型生成参考图像,并将其用于指导恢复过程。如图1所示,认知嵌入包含了语言理解,同时保留了图像的颜色和纹理信息,从而产生了高质量的参考图像,不仅在语义上对齐,而且在外观上相似。这种显式方法在捕获高清纹理方面带来了实质性的改进。为了同时保证纹理的真实感和保真度,本文引入了一种“All-in-Attention”设计,通过注意机制集成了多个信息源,包括认知嵌入、参考图像和 LR 输入。这种方法允许模型灵活地使用不同的条件组件,从而产生改进的结果。实验表明,与以前的方法相比,本文的模型在生成更复杂的纹理的同时保持了保真度。
更高清图像的精确理解、更高质量的训练数据、更强的图像解析推理能力,还能结合图像推理和生成,香港中文大学终身教授贾佳亚团队提出的这款多模态模型Mini-Gemini堪称绝绝子,相当于开源社区的GPT4+DALLE3的王炸组合!
领取专属 10元无门槛券
手把手带您无忧上云