1、和树的遍历类似,从图中某一项点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这个过程叫做图的遍历。
由节点(Node)组成的数据结构,其中每个节点包含一个数据元素和一个指向下一个节点的指针。链表可以是单向的(只有指向下一个节点的指针)或双向的(有指向上一个节点的指针)。链表的节点可以动态地添加或删除,因此适用于需要频繁插入或删除元素的场景。
上一篇我们了解了图的基本概念、术语以及存储结构,还对邻接表结构进行了模拟实现。本篇我们来了解一下图的遍历,和树的遍历类似,从图的某一顶点出发访问图中其余顶点,并且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traversing Graph)。如果只访问图的顶点而不关注边的信息,那么图的遍历十分简单,使用一个foreach语句遍历存放顶点信息的数组即可。但是,如果为了实现特定算法,就必须要根据边的信息按照一定的顺序进行遍历。图的遍历算法是求解图的连通性问题、拓扑排序和求解关键路径等算法的基础。
问题:数据结构是干什么用的呢? 我们这学期开数据结构C语言版,已经过去半学期了,还是没有头绪。去年已经学过C与C++了,觉得已经可以编写程序了呀?然后我们为什么还要学习数据结构呢?学习什么链表,插入删除数据,看代码,觉得很复杂。这是干什么用的呢?C或C++里不就已经可以插入数据,存储数据么?建个数组,运用指针不就可以很方便么?还要费这劳什子自己写一大串代码就是为了建个链表能存两个数据? 回答一: 链表的好处在于不用使用连续的内存,而是利用内存中分散的存储单元存储数据;而且链表的长度是可以任意增删
图的遍历是计算机科学中的一项重要任务,用于查找和访问图中的所有节点。深度优先搜索( DFS )和广度优先搜索( BFS )是两种常用的图遍历算法。本篇博客将重点介绍这两种算法的原理、应用场景以及使用 Python 实现,并通过实例演示每一行代码的运行过程。
一、图的遍历 与树的遍历操作类同,图的遍历操作的定义是,访问途中的每个顶点且每个顶点之北访问一次。图的遍历方法有两种:一种是深度优先遍历,另一种是广度优先遍历。图的深度优先遍历类似于树的先根遍历,图的广度优先遍历类同于树的层序遍历。 图的遍历需要考虑的三个问题: (1)图的特点是没有首尾之分,所以算法的参数要指定访问的第一个顶点。 (2)因为对图的遍历路径有可能构成一个回路,从而造成死循环,所以算法设计要考虑遍历路径可能出现的死循环问题。 (3)一个顶点可能和若干个顶点都是邻接顶点,要使一个顶点的所有邻接顶点按照某种次序都被访问到。 二、连通图的深度优先遍历算法。 图的深度优先遍历算法是遍历时深度优先的算法,即在图的所有邻接顶点中,每次都在访问完当前节点后,首先访问当前顶点的第一个邻接顶点。 深度优先遍历算法可以设计成递归算法。对于连通图,从初始顶点出发一定存在路径和连通图中其它顶带相连,所以对于连通图来说,从初始顶点出发一定可以遍历该图。连通图的深度优先遍历递归算法如下。 (1)访问顶点v并标记顶点v已被访问。 (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行,否则算法结束。 (4)若顶点w尚未被访问,则深度优先遍历递归访问顶点w. (5)查找顶点v的w邻接顶点的下一个邻接顶点w,转到步骤(3). 上述递归算法属于回溯算法,当寻找顶点v的邻接顶点w成功时,继续进行;当寻找顶点v的邻接顶点w失败时,回溯到上一次递归调用的地方继续进行。 对于下图:
其实就是一个权重矩阵,用 1 代表两个结点有连接,0 表示没有连接,这样的表示方式通俗易懂,特别适合稠密图,也就是大多数结点是亮亮连接的情况。
众所周知,一般正规的开发团队都有 review 代码的环节,目的是为了让代码更加具备可读性,方便其他人更加快速的看懂、更加快速的开发业务代码。
小吴花了几天时间整理了一下学习「数据结构与算法」可以参考的书籍,希望能在学习的道路上帮到你,文末提供收集的PDF版。
This time let us consider the situation in the movie “Live and Let Die” in which James Bond, the world’s most famous spy, was captured by a group of drug dealers. He was sent to a small piece of land at the center of a lake filled with crocodiles. There he performed the most daring action to escape — he jumped onto the head of the nearest crocodile! Before the animal realized what was happening, James jumped again onto the next big head… Finally he reached the bank before the last crocodile could bite him (actually the stunt man was caught by the big mouth and barely escaped with his extra thick boot).
给你一个由 '1'(陆地)和 '0'(水)组成的的二维网格,请你计算网格中岛屿的数量。
图的周游:是一种按某种方式系统地访问图中的所有节点的过程,它使每个节点都被访问且只访问一次。图的周游也称图的遍历。
按照右手原则,每次选择上一顶点的最右边的下一顶点,走过一个顶点标记一个顶点,不能走被标记过的顶点,一条路走到黑,直到无路可走,然后回溯。 这个就是先走到最大深度,不能再深入后,再返回到有支路可走的顶点继续深入到最下面。
这种遍历算法可以想象成在玩迷宫,我们选择一个方向走到底,直至不能走了然后再返回一步继续尝试其他的方向,在代码中就是递归+回溯,这就是 深度优先遍历。
本系列文章将会以通俗易懂的对话方式进行教学,对话中将涵盖了新手在学习中的一般问题。此系列将会持续更新,包括别的语言以及实战都将使用对话的方式进行教学,基础编程语言教学适用于零基础小白,之后实战课程也将会逐步更新。
其实我们之前学过的二叉树的层序遍历就是一种广度优先遍历,要借助一个队列来搞,下面对图的广度优先遍历也是一样
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是深度优先遍历(Depth First Search),也有称为深度优先搜索,简称为DFS。第二种是《广度优先遍历(Breadth First Search)》,也有称为广度优先搜索,简称为BFS。我们在《堆栈与深度优先搜索》中已经较为详细地讲述了深度优先搜索的策略,这里不再赘述。我们也可以把图当作一个迷宫,设定一个起始点
现在正坐在安静的寝室里,寒假俨然已经离我而去了……今天发的是我寒假里搞的最后一次学习,之后的时间就一直在看海贼王了。
图是由一组节点和连接这些节点的边组成的数据结构。图可以用于表示现实世界中的各种关系和网络。
提到这个名字,很多人会想到前段时间让全世界振奋的围棋人工智能Alphago,想曾经我也了解过一些围棋的AI。我也正想花点时间说说alphago相关的东西,包括alphago的架构以及模型引申等,不过这篇文章里我只说围棋规则的实现,和人工智能无关。 规则 说到围棋规则的实现不得不先说围棋规则,一般来说,至少有三种围棋规则:中国规则,日本规则,应氏规则。其实还有中国古代规则,和这三种规则都有一点差别。应氏规则和中国规则实际差距非常非常小,小到很多人认为可以忽略不计。但中国规则和日本规则的差别有些大,个
图的遍历和树的遍历类似,我们希望从图中某一顶点出发访遍图中其余顶点,且使每一个顶点仅被访问一次,这一过程就叫做图的遍历(Traverse Graph)。 图的遍历方法一般有两种,第一种是我们在前面讲过的《深度优先遍历(Depth First Search)》,也有称为深度优先搜索,简称为DFS。第二种是广度优先遍历(Breadth First Search),也有称为广度优先搜索,简称为BFS。我们在《队列与广度优先搜索》中已经较为详细地讲述了广度优先搜索的策略,这里不再赘述。如果说图的深度优先遍历类
数学中有一个重要概念,就是抽象。由数学开始发展的计算机科学,自然也离不开抽象。计算机语言、编程范式都为抽象提供了工具,函数、回调、泛型、算子、类……
美团在前几天也开启了春招实习招聘模式,这一轮的笔试难度比较大,总共有五题,前三题属于“送分题”,最后一题属于名副其实的难题,毕竟涉及到一个相对复杂的数据结构--并查集,我看了关于这次笔试的一些讨论,很多人都对这题有些懵逼,所以今天我们来讲一道并查集相关的算法题。
PS:这篇文章是之前 为什么我没写过「图」相关的算法?的修订版,主要是因为旧文中缺少 visited 数组和 onPath 数组的讨论,这里补上,同时将一些表述改得更准确,文末附带图论进阶算法。
遍历是指从某个节点出发,按照一定的的搜索路线,依次访问对数据结构中的全部节点,且每个节点仅访问一次。 在二叉树基础中,介绍了对于树的遍历。树的遍历是指从根节点出发,按照一定的访问规则,依次访问树的每个节点信息。树的遍历过程,根据访问规则的不同主要分为四种遍历方式: (1)先序遍历 (2)中序遍历 (3)后序遍历 (4)层次遍历 类似的,图的遍历是指,从给定图中任意指定的顶点(称为初始点)出发,按照某种搜索方法沿着图的边访问图中的所有顶点,使每个顶点仅被访问一次,这个过程称为图的遍历。遍历过程中得到的顶点序列称为图遍历序列。 图的遍历过程中,根据搜索方法的不同,又可以划分为两种搜索策略: (1)深度优先搜索(DFS,Depth First Search) (2)广度优先搜索(BFS,Breadth First Search)
作者:吴军 摘自:《数学之美》(人民邮电出版社) 离散数学包括数理逻辑、集合论、图论和近世代数四个分支。这里我们介绍图论和互联网自动下载工具网络爬虫 (Web Crawlers) 之间的关系。用 Google Trends来搜索一下“离散数学”这个词,可以发现不少有趣的现象。 我们上回谈到了怎样创建搜索引擎的索引,那么怎样自动下载互联网所有的网页呢,它要用到图论中的遍历(Traverse) 算法。 图论的起源可追溯到大数学家欧拉(Leonhard Euler)。1736 年欧拉来到德国的哥尼斯堡(Konig
Python这些年风头一直很盛,占据了很多领域的位置,Web、大数据、人工智能、运维均有它的身影,甚至图形界面做的也很顺,乃至full-stack这个词语刚出来的时候,似乎就是为了描述它。 Python虽有GIL的问题导致多线程无法充分利用多核,但后来的multiprocess可以从多进程的角度来利用多核,甚至affinity可以绑定具体的CPU核,这个问题也算得到解决。虽基本为全栈语言,但有的时候为了效率,可能还是会去考虑和C语言混编。混编是计算机里一个不可回避的话题,涉及的东西很多,技术、架构、
在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 。它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型。既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的操作啦,也就是算法的部分。不管是图还是树,遍历都是很重要的部分,今天我们就先来学习最基础的两种图的遍历方式。
选题一:设二维数组a[1…m,1…n]含有m*n个整数,写一个算法判断a中所有元素是否互不相同,输出相关信息(yes/no)。由于程序功能单一故直接将算法写入主函数中。
深度优先搜索是一种从起始节点出发,沿着图的分支尽可能深入,然后回溯并继续探索其他分支的遍历方法。
Neo4j是一个NoSQL的图数据库管理系统,图是一个比线性表和树更高级的数据结构。具有始终保持高效查询性能,不会因数据的增长而降低查询的反应能力,具备事务管理特性,完全支持ACID事务管理。
在讨论图的遍历问题之前,我们先来讨论一下图的存储问题,也就是我们在写程序的时候如何保存、表示一个图。首先我们会用连续的整数编号来表示点集。比如1号顶点、2号顶点…… 其次,我们有两种方法表示边集。一种叫做邻接矩阵表示法,另一种叫邻接表表示法 邻接矩阵是说我们用一个二维矩阵A来表示边集。A~ij~=0表示顶点i和顶点j之间不存在边,A~ij~=1表示顶点i和顶点j之间存在边。例如:
上一篇我们对数据结构中常用的树做了介绍,本篇博客主要以二叉树为例,讲解一下树的数据结构和代码实现。回顾二叉树:二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)
本文记录了一些数据结构面试常见问题,本意用于考研复试,以下面试题为网上整理的问题以及自己加入的一些问题,答案仅供参考!
数据结构与算法,是大学中计算机相关专业里的一门必修的基础课,当时学习的时候并不能列其中的知识点,毕业之后随着对计算机专业知识的了解加深,才意识到其重要性,今天我就来研究一番。
今天的文章跟大家讲一下,C语言中的文件操作——遍历文件夹和删除文件,以及如何应用这两个技能来写一个有趣的小程序,这篇文章涉及的知识点很少,也很简单,所以这篇文章就当做给小白们的小教程吧,让你们每天都能充满激情地学习编程,摆脱学习C语言枯燥乏味的过程。
图的遍历是指从图中的某一顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点访问一次且仅访问一次。注意到树是一种特殊的图,所以树的遍历实际上也可以看作是一种特殊图的遍历。图的遍历是图的一种最基本的操作,其他许多操作都建立在图的遍历操作基础之上。
C语言一经出现就以其功能丰富、表达能力强、灵活方便、应用面广等特点迅速在全世界普及和推广。C语言不但执行效率高而且可移植性好,可以用来开发应用软件、驱动、操作系统等。C语言也是其它众多高级语言的鼻祖语言,所以说学习C语言教程是进入编程世界的必修课!
记住一点,数组是以0为下标,然后依次往后计数,比如你设定的数组的长度是3,你要访问数组中最后一个元素,它的下标是2,如果你把下标记成3的话,数组就会溢出,报错
景禹: 图的遍历方法包括 深度优先遍历(搜索) 和 广度优先遍历(搜索) 两种方式。小禹禹能给我说一下树的四种遍历方式吗?
听听这是人话么,我帮你们翻译一下,其实数据结构就是用来描述计算机里存储数据的一种数学模型,因为计算机里要存储很多乱七八糟的数据,所以也需要不同的数据结构来描述。
作为一个开发者,我发现在我的日常工作中越来越多地查看PHP的源码。在为了弄清楚奇怪的边界问题和为什么某些问题应该发生的却没有发生而去理解背后究竟发 生了什么事情的时候非常有用。在文档缺失、不完整或者错误的情况下也很有用。因此,我已经决定通过一系列的文章来分享我学到的知识,给予PHP开发者们足 够的知识去真正阅读PHP的C语言源码。你并不需要有C语言的基础(我们会总结一些基础),但如果有的话会更有帮助。 这是这个系列的第一篇文章。在这篇文章,我们会谈论PHP程序的基础:在哪里找到它,基本的代码结构和一些最基础
String在Redis底层是怎么存储的?这些数据类型在Redis中是怎么存放的?Redis快的原因就只有单线程和基于内存么?
挺有意思的一个问题,作为一个天天写代码的人平时也没怎么太在意这些细节,过滤了几种编程语言,大致总结了几种常用的代码
和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中所有顶点各做一次访问。
我:哦哦哦,还有HyperLogLog,bitMap,GeoHash,BloomFilter
领取专属 10元无门槛券
手把手带您无忧上云