首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图的遍历(深度优先搜索和广度优先搜索)

    一、图的遍历 与树的遍历操作类同,图的遍历操作的定义是,访问途中的每个顶点且每个顶点之北访问一次。图的遍历方法有两种:一种是深度优先遍历,另一种是广度优先遍历。图的深度优先遍历类似于树的先根遍历,图的广度优先遍历类同于树的层序遍历。 图的遍历需要考虑的三个问题: (1)图的特点是没有首尾之分,所以算法的参数要指定访问的第一个顶点。 (2)因为对图的遍历路径有可能构成一个回路,从而造成死循环,所以算法设计要考虑遍历路径可能出现的死循环问题。 (3)一个顶点可能和若干个顶点都是邻接顶点,要使一个顶点的所有邻接顶点按照某种次序都被访问到。 二、连通图的深度优先遍历算法。 图的深度优先遍历算法是遍历时深度优先的算法,即在图的所有邻接顶点中,每次都在访问完当前节点后,首先访问当前顶点的第一个邻接顶点。 深度优先遍历算法可以设计成递归算法。对于连通图,从初始顶点出发一定存在路径和连通图中其它顶带相连,所以对于连通图来说,从初始顶点出发一定可以遍历该图。连通图的深度优先遍历递归算法如下。 (1)访问顶点v并标记顶点v已被访问。 (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行,否则算法结束。 (4)若顶点w尚未被访问,则深度优先遍历递归访问顶点w. (5)查找顶点v的w邻接顶点的下一个邻接顶点w,转到步骤(3). 上述递归算法属于回溯算法,当寻找顶点v的邻接顶点w成功时,继续进行;当寻找顶点v的邻接顶点w失败时,回溯到上一次递归调用的地方继续进行。 对于下图:

    03

    数据结构与算法: 三十张图弄懂「图的两种遍历方式」

    遍历是指从某个节点出发,按照一定的的搜索路线,依次访问对数据结构中的全部节点,且每个节点仅访问一次。   在二叉树基础中,介绍了对于树的遍历。树的遍历是指从根节点出发,按照一定的访问规则,依次访问树的每个节点信息。树的遍历过程,根据访问规则的不同主要分为四种遍历方式:   (1)先序遍历   (2)中序遍历   (3)后序遍历   (4)层次遍历   类似的,图的遍历是指,从给定图中任意指定的顶点(称为初始点)出发,按照某种搜索方法沿着图的边访问图中的所有顶点,使每个顶点仅被访问一次,这个过程称为图的遍历。遍历过程中得到的顶点序列称为图遍历序列。   图的遍历过程中,根据搜索方法的不同,又可以划分为两种搜索策略:   (1)深度优先搜索(DFS,Depth First Search)   (2)广度优先搜索(BFS,Breadth First Search)

    02
    领券