首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人脸识别技术一夜躺枪后 百度、旷视、商汤、云从等是这样“技术”回应的

    昨晚的央视315晚会上,人脸识别技术被曝存在安全隐患。不少观众看到主持人在现场技术人员支持下,仅凭两部手机、一张随机正面照片及一个换脸App,分别就一张”眨眨眼”的照片和一段”活体检测”场景模拟,成功“攻破”人脸识别系统。 一般业内人士看到的是主持人手里所持人脸识别App的技术漏洞;但对于普通观众来说,他们看到的是一个不甚熟悉的高科技技术应用背后的“巨大风险”——人脸识别技术怎么会被破解?为什么一个换脸App软件就能轻松换脸?它会不会分分钟“掏空”我的账户……经由央视这个大众平台一放大,即使只是出于提醒消费

    09

    基于商业云平台的人脸识别与核身产品了解

    人脸识别: Face Recognition 基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于智慧零售、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 人脸核身: 腾讯云慧眼(原金融级身份认证升级版)是一组对用户身份信息真实性进行验证审核的服务套件,提供各类认证功能模块,包含证件 OCR 识别、活体检测、人脸1:1对比等能力,以解决行业内大量对用户身份信息核实的需求,广泛应用于金融、运营商、共享出行等领域。

    01

    【315 AI技术追踪】人脸识别一夜躺枪?支付宝、商汤、云从等回应

    【新智元导读】 2017年的“315”落下帷幕,人脸识别技术公司纷纷躺枪。16日一大早,大家纷纷发表声明,表示自家的人脸识别技术还是相当安全的。本文整理了各家的回应,由此也可以看到,这些科技公司是否真的“躺枪”?人脸识别技术近年来持续火热,那么真实的行业发展状况如何?商业化应用中是否真的会如此轻易就被攻破?来看看专家们怎么说。 一年一度的“315” 落下帷幕,伴随着人工智能的火热,相关技术应用也在这场以“打假”、“维护消费者权益”为名的晚会上被点名。其中最受关注的一个便是——人脸识别。 晚会现场,主持人现

    06

    ICCV 2023 | IDeudemon:基于神经辐射场和生成性先验的人脸图像身份隐私保护

    海量的人脸图像每天被上传到各种社交网络和共享平台。尽管包含大量的个人信息,这些图像的传播和获取却难以得到有效监管。因此随着计算机视觉技术特别是图像理解应用的快速发展,人们对个人隐私泄露的担忧愈演愈烈。人脸图像身份隐私保护是一个旨在从面部图像中删除人的所有身份识别的信息,同时保留尽可能多的其他与身份无关的信息的过程。理想情况下,身份信息被保护的同时,其他与身份无关的人脸特征并不会被影响,比如表情,姿态和背景。身份保护后的图像仍然保持与原图较高的视觉相似度和与原图可比的视觉质量,并可被用于与身份无关的任务,比如人脸检测,表情分析,姿势识别等。因此,研究者们付出了巨大的努力来获得有效的隐私性-实用性权衡。人脸身份隐私保护可以让个人放心地分享个人肖像,同时消除一些实体和机构发布面部数据时的道德和法律约束。

    02

    基于MTCNN和MobileFaceNet实现的人脸识别

    本教程是教程是介绍如何使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别,并不介绍如何训练模型。关于如何训练MTCNN和MobileFaceNet,请阅读这两篇教程 MTCNN-Tensorflow 和 MobileFaceNet_TF ,这两个模型都是比较轻量的模型,所以就算这两个模型在CPU环境下也有比较好的预测速度,众所周知,笔者比较喜欢轻量级的模型,如何让我从准确率和预测速度上选择,我会更倾向于速度,因本人主要是研究深度学习在移动设备等嵌入式设备上的的部署。好了,下面就来介绍如何实现这两个模型实现三种人脸识别,使用路径进行人脸注册和人脸识别,使用摄像头实现人脸注册和人脸识别,通过HTTP实现人脸注册和人脸识别。

    03

    基于MTCNN和MobileFaceNet实现的人脸识别

    本教程是教程是介绍如何使用Tensorflow实现的MTCNN和MobileFaceNet实现的人脸识别,并不介绍如何训练模型。关于如何训练MTCNN和MobileFaceNet,请阅读这两篇教程 MTCNN-Tensorflow 和 MobileFaceNet_TF ,这两个模型都是比较轻量的模型,所以就算这两个模型在CPU环境下也有比较好的预测速度,众所周知,笔者比较喜欢轻量级的模型,如何让我从准确率和预测速度上选择,我会更倾向于速度,因本人主要是研究深度学习在移动设备等嵌入式设备上的的部署。好了,下面就来介绍如何实现这两个模型实现三种人脸识别,使用路径进行人脸注册和人脸识别,使用摄像头实现人脸注册和人脸识别,通过HTTP实现人脸注册和人脸识别。

    01

    在双因素身份认证领域混迹6年,聊聊我的见解

    先简单聊点众所周知的,什么是双因素认证? 借用百科的描述: 双因素认证是一种采用时间同步技术的系统,采用了基于时间、事件和密钥三变量而产生的一次性密码来代替传统的静态密码。每个动态密码卡都有一个唯一的密钥,该密钥同时存放在服务器端,每次认证时动态密码卡与服务器分别根据同样的密钥,同样的随机参数(时间、事件)和同样的算法计算了认证的动态密码,从而确保密码的一致性,从而实现了用户的认证。因每次认证时的随机参数不同,所以每次产生的动态密码也不同。由于每次计算时参数的随机性保证了每次密码的不可预测性,从而在最基本的

    02
    领券