首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

向量的点和叉

如 【点】 在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。...【叉向量积,数学中又称外积、叉积,物理中称矢积、叉,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。...方向:a向量b向量向量积的方向与这两个向量所在平面垂直,且遵守右手定则。...性质 几何意义及其运用 叉积的长度 |a×b| 可以解释成这两个叉向量a,b共起点时,所构成平行四边形的面积。...两个非零向量a和b平行,当且仅当a×b=0 拉格朗日公式 这是一个著名的公式,而且非常有用: a×(b×c)=b(a·c) -c(a·b), 证明过程如下: 二重向量化简公式及证明 可以简单地记成

4.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    窥探向量矩阵的存内计算原理—基于向量矩阵的存内计算

    原文:窥探向量矩阵的存内计算原理—基于向量矩阵的存内计算-CSDN博客CSDN-一见已难忘在当今计算领域中,存内计算技术凭借其出色的向量矩阵操作效能引起了广泛关注。...窥探向量矩阵的存内计算原理生动地展示了基于向量矩阵的存内计算最基本单元。这一单元通过基尔霍夫定律,在仅一个读操作延迟内完整执行一次向量矩阵操作。...基于基尔霍夫定律,比特线上的输出电流便是向量矩阵操作的结果。将这一操作扩展,将矩阵存储在ReRAM阵列中,通过比特线输出相应的结果向量。探寻代表性工作的独特之处 1....DPE (Hewlett Packard Laboratories) DPE是专为向量矩阵操作设计的存内计算加速器。...ISAAC通过ReRAM阵列实现向量矩阵操作,采用流水线方式提高推理效率,为神经网络的推理提供了独特而高效的解决方案。 3.

    19120

    平面几何:求向量 a 到向量 b扫过的夹角

    今天我们来学习如何求向量 a 到向量 b扫过的弧度,或者也可以说是角度,转换一下就好了。 求两向量的夹角 求两向量的夹角很简单,用点积公式。...a 到向量 b 扫过的夹角 但很多的情况下,角度是有方向的:逆时针或顺时针。...三维中两个向量 a、b 的叉积运算,会使用 a x b 表示,其结果也是一个向量 c。向量 c 会同时垂直于向量 a、b,或者可以理解为垂直于它们形成的平面)。...if (a.x * b.y - a.y * b.x < 0) { theta = -theta; } 完整代码 /** * 求向量 a 到向量 b 扫过的夹角 * 这里假设顺时针方向为正...*/ const getSweepAngle = (a, b) => { // 点求夹角 const dot = a.x * b.x + a.y * b.y; const d = Math.sqrt

    23310

    向量的内积和叉积_点和叉的区别

    公式 对于向量a和向量b: a和b的点积公式为: 要求一维向量a和向量b的行列数相同。...点几何意义 点的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成: 定义向量: 根据三角形余弦定理有: 根据关系c...相互垂直 a·b<0 方向基本相反,夹角在90°到180°之间 叉公式 两个向量的叉,又叫向量积、外积、叉积,叉的运算结果是一个向量而不是一个标量。...对于向量a和向量b: a和b的叉公式为: 其中: 根据i、j、k间关系,有: 叉几何意义 在三维几何中,向量a和向量b的叉结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面...在3D图像学中,叉的概念非常有用,可以通过两个向量的叉,生成第三个垂直于a,b的法向量,从而构建X、Y、Z坐标系。

    1.1K10

    支持向量机之最小二(LS)-------6

    上次了解了核函数与损失函数之后,支持向量机的理论已经基本完成,今天将谈论一种数学优化技术------最小二乘法(Least Squares, LS)。...使误差平方和达到最小以寻求估计值的方法,就叫做最小二乘法,用最小二乘法得到的估计,叫做最小二估计。当然,取平方和作为目标函数只是众多可取的方法之一。...对最小二乘法的优良性做了几点说明: 最小二使得误差平方和最小,并在各个方程的误差之间建立了一种平衡,从而防止某一个极端误差取得支配地位 计算中只要求偏导后求解线性方程组,计算过程明确便捷 最小二可以导出算术平均值作为估计值...先来梳理下几个基本概念: (1) 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。...上面仅仅给出了SMO算法的最终求解公式,并未给出具体的求解过程,这个内容将在明天给出,也是关于支持向量机基本理论的最后一点内容~~~~

    2.9K90

    向量与差的区别,以及python下np.dot函数

    : 点的结果是一个实数 a·b=|a|·|b|·cosx x为a,b的夹角 结果为数,且为标量 例: A=[a1,a2,a3],B=[b1,b2,b3] A·B=...a1b1+a2b2+a3b3 叉向量积): 当向量a和b不平行的时候其模的大小为 |a×b|=|a|·|b|·sinx (实际上是ab所构成的平行四边形的面积) 方向为 a×b和a,b都垂直 且a...,b,a×b成右手系当a和b平行的时候,结果为0向量结果为矢量,且方向与为A、B矢量均垂直的方向。...A×B=[a2b3-a3b2,a3b1-a1b3,a1b2-a2b1] 这个式子很不好记忆,看到一种很N×的方法,很好很强大。 ?...再设矩阵 B=[[2,4],[1,3],[3,2]] ,其中第一列表示三种产品的单件利润,第二列表示三种产品的单件体积。

    2.2K30

    向量空间相关概念总结-向量

    向量方向 向量平行:两个向量方向相同或相反就算平行 零向量:起点和终点是同一个点,零向量长度是0,注意,零向量与任何一个向量平行,他虽然长度为0,但是他却有无穷多的方向 基础运算 向量加法...当然,如果两个边共线了,那第三个边等于前两个边之和 向量:就是一个向量乘以一个数。比如一个向量乘以k,几何意义就是这个向量放大了k倍,k如果是负数那方向就反过来了。...向量的代数表示: ? 行向量同理 运算规则: ? 加法交换律 ? 加法结合律 ?...数交换律 ? 数结合律 ?...数分配律 不管是向量加法还是数,都算向量的运动,或者向量的变换 注:点积还是单独记录吧(本文章的图部分来源自“马同学高等数学”)

    96220

    最小二支持向量回归机(LS-SVR)

    今天,将给出支持向量机在回归方面的应用,最小二支持向量机 Least square support vector regression, LS-SVR....作为标准SVM 的改进,最小二支持向量机(Least squares support vector machine,LS-SVM)是在回答“How much can the SVM formulation...据此,Suykens在2002年提出加权最小二支持向量机(Weighted least squares support vector machine, WLS-SVM)。...Suykens 在借鉴SVM 优点的基础上,提出最小二支持向量机(Least Squares SupportVector Machine, LS-SVM。...而b 和 又常被称为模型参数。同样由Mercer 定理可知: ? 其中K 为对称正定的核函数,常用形式为高斯径向基(RBF)核函数: ? 可以得到新入样本x 的函数估计预测表达式: ?

    9.7K101

    中断向量 中断向量

    2、中断向量:早期的微机系统中将由硬件产生的中断标识码(中断源的识别标志,可用来形成相应的中断服务程序的入口地址或存放中断服务程序的首地址)称为中断向量。...在某些计算机中,中断向量的位置存放一条跳转到中断服务程序入口地址的跳转指令。 3、中断向量地址:存储中断向量的存储单元地址。...存放:存放中断服务程序的入口地址,来存放中断向量(共256个),称这一片内存区为中断向量表。...当响应中断时,硬件自动执行相应中断向量处的跳转代码,然后跳转到具体的中断服务程序的入口地址。...综上所述:中断向量的地址一定是 中断服务程序的入口地址的地址,但中断向量不一定就是中断服务程序的入口地址。

    2.6K40

    高数学习笔记之向量内积(点)和外积(叉)概念及几何意义

    0x00 概述 在机器学习的过程中,需要了解向量内积(点)和外积(叉)概念及几何意义。 0x01 向量的内积(点) 1.1 定义 概括地说,向量的内积(点/数量积)。...对两个向量执行点运算,就是对这两个向量对应位一一相之后求和的操作,如下所示,对于向量a和向量b: ? a和b的点积公式为: ? 这里要求一维向量a和向量b的行列数相同。...注意:点的结果是一个标量(数量而不是向量) 定义:两个向量a与b的内积为 a·b = |a||b|cos∠(a, b),特别地,0·a =a·0 = 0;若a,b是非零向量,则a与b****正交的充要条件是...|a·b| ≤ |a||b|,等号只在a与b共线时成立. ''' 1.3 向量内积的几何意义 内积(点)的几何意义包括: ''' 1....向量的外积(叉) 2.1 定义 概括地说,两个向量的外积,又叫叉、叉积向量积,其运算结果是一个向量而不是一个标量。

    8.2K40

    支持向量机 支持向量机概述

    支持向量机概述 支持向量机 Support Vector MachineSVM ) 是一类按监督学习 ( supervisedlearning)方式对数据进行二元分类的广义线性分类器 (generalized...算法思想 找到集合边缘上的若工数据 (称为支持向量 (Support Vector) )用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大 超平面方程: \mathbf{w}...\cdot \mathbf{x} + b = 0 间隔(Margin): \text{Margin} = \frac{2}{\|\mathbf{w}\|} 决策函数: (\mathbf{w}...\cdot \mathbf{x} + b ) /||w|| >=d ,y=1 (\mathbf{w} \cdot \mathbf{x} + b ) /||w|| >=d ,y=-1 如图所示,根据支持向量的定义我们知道...,支持向量到超平面的距离为 d,其他点到超平面的距离大于 d 至此可以得到最大间隔超平面的上下两个超平面: d=|\mathbf{w} \cdot \mathbf{x} + b | /||w||

    25910

    【词向量】Hsigmoid加速词向量训练

    本周推文目录如下: 周三:【词向量】Hsigmoid加速词向量训练 周四:【词向量】 噪声对比估计加速词向量训练 周五:【RNN语言模型】使用RNN语言模型生成文本 词向量用一个实向量表示词语,向量的每个维都表示文本的某种潜在语法或语义特征...(a)为平衡二叉树,(b)为根节点到类别1的路径 二叉树中每个非叶子节点是一个二类别分类器(sigmoid),如果类别是0,则取左子节点继续分类判断,反之取右子节点,直至达到叶节点。...B.自定义数据 用户可以使用自己的数据集训练模型,自定义数据集最关键的地方是实现reader接口做数据处理,reader需要产生一个迭代器,迭代器负责解析文件中的每一行数据,返回一个python list...target_word, param_attr=paddle.attr.Param(name="sigmoid_w") bias_attr=paddle.attr.Param(name="sigmoid_b"...name="sigmoid_w")), act=paddle.activation.Sigmoid(), bias_attr=paddle.attr.Param(name="sigmoid_b"

    1.1K80

    向量空间相关概念总结-向量空间

    什么是向量空间 特点: ① 包含向量 比如向量组,而且向量组内部的向量维数相同 ② 包含向量的运动 向量的加法->生成新的向量 向量的数->向量伸缩 ③ 向量的运动依然在空间中 向量相加生成的新向量也在这个空间中...向量伸缩完之后也在这个空间中 定义: 如果一个向量组,它对向量的加法和数两种运算封闭,那么就称它为向量空间。...是指在这个向量空间中的向量进行数和加减,结果依然在这个向量空间内,即: ?...如何判断某个向量空间A是不是另一个向量空间B的子空间 ① 是不是包含原点,不包含原点的连向量空间都不是 ② A向量空间里的向量进行加法变换生成的新向量是否一定在B向量空间中 ③ A向量空间里的向量进行数变换后是否一定在...B向量空间中 ④ 当然了,还得先判断A到底是不是向量空间,判断依据依照上面向量空间的特点。。

    1.9K20

    向量空间

    假设平面直角坐标系中两个向量: 如图所示,如果要将这两个向量相加,可以按照中学物理所学习的“平行四边形”法则,得到了向量,其端点坐标如图中所标示。 ?...显然,对于集合,所有的向量都遵循上述加法运算法则。 此外,如果用一个数值乘以某个向量,例如,则得到图1-2-3所示: ? 1-2-3 所得到的向量与原来的向量方向相同,但长度是原来的倍。...根据向量空间的加法和数量乘法运算法则,可以得到如下8条推论,它们都是某个向量空间中向量所遵循的运算法则。...以上表示向量的时候,写成了一列,这种称为列向量。此外,也可以写成一行,如,那样,称为行向量。有时为了书写方便,会把列向量写成,T表示转置。...在机器学习中,向量无处不在,可以说只要有计算,就离不开向量。为何?这是因为向量能够让提升运算速度。

    1.2K10
    领券