首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

matlab插值函数的作用,matlab 插值函数

MATLAB中的插值函数为interp1,其调用格式为: yi= interp1(x,y,xi,’method’) 其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, ‘method...’表示采用的插值方法,MATLAB提供的插值方法有几种: ‘method’是最邻近插值, ‘linear’线性插值; ‘spline’三次样条插值; ‘cubic’立方插值.缺省时表示线性插值 注意:所有的插值方法都要求...x是单调的,并且xi不能够超过x的范围。...例如:在一 天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为 12,9,9,1,0,18 ,24,28,27,25,20,18,15,13, 推测中午12点(即13点)时的温度. x=0:2...: 27.8725 若要得到一天24小时的温度曲线,则: xi=0:1/3600:24; yi=interp1(x,y,xi, ‘spline’); plot(x,y,’o’ ,xi,yi) 发布者:

1.3K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    matlab自带的插值函数interp1的几种插值方法

    插值法 插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。...根据图中所示,我们得到两点式直线方程: 假设方程两边的值为α,那么这个值就是插值系数—从x0到x的距离与从x0到x1距离的比值。...实际上,即使x不在x0到x1之间并且α也不是介于0到1之间,这个公式也是成立的。在这种情况下,这种方法叫作线性外插—参见 外插值。   已知y求x的过程与以上过程相同,只是x与y要进行交换。...x是单调的,并且xi不能够超过x的范围。...; ‘pchip’立方插值.缺省时表示线性插值 注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

    13.7K20

    Unity【Lerp & Slerp】- 线性插值与球形插值的区别

    在Unity的向量Vector和四元数Quaternion类中,均包含线性插值Lerp和球形插值Slerp的函数,那么两者之间有何区别,通过下面的例子进行观察: 图一中黄色线与红色线相交的点是从点...二者的区别从图中可以明显看出,从四元数的角度来看,线性插值每帧得出的旋转结果是不均匀的,从代数的角度思考,如果两个单位四元数之间进行插值,如图一中的线性插值,得到的四元数并不是单位四元数,因此球形插值更为合理...Vector3.Lerp(a.position, b.position, i * .1f); Handles.color = Color.red; //绘制点O到插值点的线段...Vector3.Slerp(a.position, b.position, i * .1f); Handles.color = Color.red; //绘制点O到插值点的线段...坐标和Rotation旋转进行插值运算时, 通常用Vector3中的插值函数去处理Position,用Quaternion中的插值函数去处理Rotation。

    1.7K20

    透视矫正插值的秘密

    如果2个变量之间可以用y=kx+b表示,那么x和y就是线性相关,从x变换到y就是线性变换,比如下图中,每个顶点乘上一个同维度的线性矩阵后,新的形状保持了一些特性:平行线仍然是平行的,各处密度均匀,原点不变...关于“密度”可以这样理解:在原始三角形上均匀的撒一些散点,待它被投影到屏幕三角形上之后,这些点是否仍然分布均匀?...我们抽象一个虚拟的插值点t,范围是0~1,t从(P1,-e)出发,匀速运动至(p2,-e),t的值也匀速地从0增长至1。...图中可以看出,近截面上的均匀散点反投影到三角形上时变得不均匀了,此外还能得出,插值点的x坐标P与t线性相关。 ? 如果我们做如下图的相似三角形,还能得出x/z与t也线性相关。 ?...然后我们将上图中的等式带入到原三角线的方程中又得到如下图的等式,其中红色字符都是变量,因此1/z和t也线性相关。根据线性相关的传递性,x与z与Q都线性相关,最终我们能推导出Q/z与t线性相关。 ?

    1.9K40

    OEEL高阶应用——反距离插值和克里金插值的应用分析

    简介 反距离插值(Inverse Distance Weighting,简称IDW)和克里金插值(Kriging)是常用的地理信息系统(GIS)和空间数据分析中的插值方法。...它们的目标是在已知的离散点数据集上,通过估计空间上的未知点的值来创建连续的表面。下面将分别对两种方法进行详细解释。 1. 反距离插值(IDW) 反距离插值是一种基于离散点之间距离的插值方法。...具体的计算公式如下: \[ f(x) = \frac{\sum_{i=1}^{n} \frac{z_i}{d_i^p}}{\sum_{i=1}^{n} \frac{1}{d_i^p}} \] 其中,...\(f(x)\)是待估计点的值,\(z_i\)是已知点的值,\(d_i\)是待估计点和已知点之间的距离,\(p\)是权重的幂次。...另外,IDW方法对噪声较敏感,容易产生估计误差较大的情况。 2. 克里金插值(Kriging) 克里金插值是一种基于空间自相关性的插值方法。

    47610

    python中griddata的外插值_利用griddata进行二维插值

    有时候会碰到这种情况: 实际问题可以抽象为 \(z = f(x, y)\) 的形式,而你只知道有限的点 \((x_i,y_i,z_i)\),你又需要局部的全数据,这时你就需要插值,一维的插值方法网上很多...,不再赘述,这里仅介绍二维的插值法 这里主要利用 scipy.interpolate 包里 griddata 函数 griddata(points, values, xi, method=’linear...的第一维长度一样,是每个坐标的对应 \(z\) 值 xi:需要插值的空间,一般用 numpy.mgrid 函数生成后传入 method:插值方法 nearest linear cubic fill_value...# 插值的目标 # 注意,这里和普通使用数组的维度、下标不一样,是因为如果可视化的话,imshow坐标轴和一般的不一样 x, y = np.mgrid[ end1:start1:step1 * 1j,...start2:end2:step2 * 1j] # grid就是插值结果,你想要的到的区间的每个点数据都在这个grid矩阵里 grid = griddata(points, values, (x, y

    3.8K10

    matlab自带的插值函数interp1的四种插值方法

    x=0:2*pi; y=sin(x); xx=0:0.5:2*pi; %interp1对sin函数进行分段线性插值,调用interp1的时候,默认的是分段线性插值 y1=interp1(x,y,xx)...语法形式 说明 y=interp1(x,Y,xi) 由已知点集(x,Y)插值计算xi上的函数值 y=interp1(x,Y,xi) 相当于x=1:length(Y)的interp(x,Y,xi) y=interp1...(x,Y,xi,method) 用指定插值方法计算插值点xi上的函数值 y=interp1(x,Y,xi,method,’extrap’) 对xi中超出已知点集的插值点用指定插值方法计算函数值 y=interp1...,怎么把这个插值函数获取到,后续调用,然后去看了一眼官方文档,有一句话 pp = interp1(x,v,method,'pp') 分段多项式,以可传递到 ppval 函数进行计算的结构体的形式返回。...也就是说这个插值函数可以使用上述代码获取到函数,然后使用ppval执行这个函数在某个特定位置的插值结果,比如 %test interpolate clear;clc;close all N=1200;

    2K10

    java integer范围值的大小_求最大值最小值的代码

    java中的Integer.MAX_VALUE和Integer.MIN_VALUE 最近在刷leetcode的题时,才发现有几道题的利用到Integer类型的最大值和最小值,尤其是在判断是否溢出的时候,...有道题就非常经典直接判断最后一位,比如最大值231 – 1的最后一位是7,而最小值 -231 的最后一位是8,这样进行一个判断 8....一般采用二进制补码进行表示和运算,MIN_VALUE = 0x80000000 和 MAX_VALUE = 0x7fffffff 就是补码表示的Integer的最小值(-231)和最大值(231-1)。...至于Integer的最大值最小值为什么是这两个数,这是因为Java语言规范规定int型为4字节,不管是32/64位机器,这就是其所宣称的跨平台的基础部分....那么在计算机中其实是用做补码进行表示和运算的,使用补码不仅仅修复了0符号以及存在两个编码的问题,而且还能够多表示一个最低数,这也就是8位二进制数表示的范围为[-127,+127],而使用补码表示的范围为

    1.3K20

    浅谈MemoryCache的原生插值方式

    TryGetValue(object key, out object result); protected virtual void Dispose(bool disposing); 但是你使用常规模式去插值...这是怎样的设计模式?IDisposable接口不是用来释放资源吗? 为啥要使用Dispose方法来向MemoryCache插值? 不能使用一个明确的Commit方法吗?...---- 基于此现状,我们如果使用MemoryCache的原生插值方法, 需要这样: var s = new MemoryCache(new MemoryCacheOptions { }); using...这种没明确指定using作用范围的语法,会在函数末尾才执行Dispose方法, 导致执行到TryGetValue时,缓存项其实还没插入!!!...Last MemoryCache插值的实现过程很奇葩 尽量使用带明确大括号范围的using语法,C#8.0推出的不带大括号的using语法糖的作用时刻在函数末尾,会带来误导。

    55020

    RBF 插值的理论与应用

    图片 径向(Radial Direction)是指沿半径的直线方向,或垂直于轴的直线方向1。径向基函数(Radial Basis Function,RBF)是一个取值仅依赖于到原点距离的实值函数2。...给定一组在采样点 \{x_i\}_{i=1}^n 上的测量值,点 x_i 上的测量值为 f_i ,我们希望找到一个「插值函数」 s(x) 使得我们能够获知其他采样点的值。...这里的插值函数 s(x) 需要满足插值条件 s(x_{i}) = f_{i} ,也就是说,这个插值函数必须精确匹配到给定的观测值。这里需要提一下「插值」和「逼近」这两种拟合方式的区别。...,此时就可以计算任意的 x 点上的 s(x) 了: 图片 显然此时将观测点中的任意一点 x_i 的位置代入 s(x) ,可以求解出和我们一开始直接算出的 s_i 一模一样的结果,这是正是前面提到的插值函数的特点...运行起来后,场景中的 3 个方块相当于上面提到的采样点 x ,而场景中的 5 个球就是待求解的 y ,拖动这些球就可以看到它们在不同位置的插值结果了: 图片 总结 # RBF 是一个常用的插值方法,除了这种简单的颜色插值之外

    1.1K60

    Scipy和Numpy的插值对比

    本文针对scipy和numpy这两个python库的插值算法接口,来看下两者的不同实现方案。 插值算法 常用的插值算法比如线性插值,原理非常简单。...给定两个点 和 ,其中 ,假如需要计算点 的值,其中 ,那么给定的插值公式就是: \begin{align} X_{t_2}&=(X_{t_1}-X_{t_0})*\frac{t_2...总结概要 线性插值和三次样条插值都是非常常用的插值算法,使用插值法,可以帮助我们对离散的样本信息进行扩展,得到样本信息中所不包含的样本点的信息。...插值法有着非常广泛的应用场景,就比如某手机厂商所号称的x千万像素拍照,其中插值法就发挥了重要作用。...在python的scipy这个库中实现了线性插值算法和三次样条插值算法,而numpy库中实现了线性插值的算法,我们通过这两者的不同使用方式,来看下所得到的插值的结果。

    3.6K10

    NV12最近的邻居插值缩放和双线性插值缩放

    导言本文是一个优化的NV12图像缩放程序。有不同类型的图像缩放算法。它图像缩放算法的复杂性与图像质量损失和性能低下有关。我决定选择最简单的“最近邻居插值”和双线性插值,以调整NV12图像的大小。...在你阅读我的提示之前。你需要对格式有一些基本的概念。并且知道什么是插值缩放算法。如果您之前厌倦了RGBA格式的图像比例,您会更容易理解我的程序是如何工作的。...total_length = ylen + ulen + vlen = ylen * 3 / 2每四个Y值匹配相同的U值和V值。...例如:Y00 Y01 Y10 Y11 份额 U00 和 V00Y20 Y21 Y30 Y31共享U10和V10算法最近的插值复制代码srcX = dstX * (srcWidth / dstWidth)...该算法只需使用“四舍五入”,将源图像中最近的像素值存储在dest图像数组中。因此,效果不会很大,通常会有一些严重的马赛克。双线性插值双线性插值同时使用小数部分和整数,根据四个像素计算最终像素值。

    2.2K21

    变速中的“时间插值”选择

    一、定义 插值 是指在两个已知值之间填充未知数据的过程 时间插值 是时间值的插值 二、分类与比较 三、tip 光流法虽然很好,但是限制也很大,必须要 对比非常大 的画面,才能够实现最佳的光流效果,否则就会出现畸变现象...通常在加速之后突然实现短暂的光流升格,可以实现非常炫酷的画面。 光流能够算帧,但是实际上拍摄的时候还是 要尽可能拍最高的帧率 ,这样的话,光流能够有足够的帧来进行分析,来实现更加好的效果。...帧混合更多的用在快放上面。可实现类似于动态模糊的感觉,视觉上也会比帧采样要很多。 ---- [参考] 【剪辑中那些关于变速的技巧!】...https://zhuanlan.zhihu.com/p/40174821 【视频变速的时间插值方式核心原理,你懂吗?】...https://zhuanlan.zhihu.com/p/67327108 【更改剪辑的持续时间和速度】https://helpx.adobe.com/cn/premiere-pro/using/duration-speed.html

    3.9K10

    Unity3d:实现自己的Dotween,C#扩展方法,插值旋转,插值移动

    public tween(string type, Transform trans, Vector3 tar, float ti,int ploops = 1) 把每次dotween要操作的tranform...,tween类型(移动,旋转,缩放等),目标位置(角度),总共运动时间组装成tween返回 Mono单例类中开启协程做插值 旋转插值 在协程中插值运算,float f = myTween.time; f...myTween.m_rotation, myTween.m_tarRotation, 1.0f-f/myTween.time); tranfrom当前四元数 = 运动开始时 与 目标的差值 ,1.0f-f/myTween.time 的值在每帧越来越靠近...} } } myTween.OnComplete(); } 移动插值...//总长度/时间 = 每秒要移动的长度 ,然后每帧移动长度 = 每秒要移动的长度 *Time.deltaTime public static IEnumerator UniversalVector3Iter

    47720

    我常用的缺失值插补方法

    有的时候,面对一个有缺失值的数据,我只想赶紧把它插补好,此时的我并不在乎它到底是怎么缺失、插补质量如何等,我只想赶紧搞定缺失值,这样好继续进行接下来的工作。 今天这篇推文就是为这种情况准备的!...之前介绍过一个非常好用的缺失值插补R包:R语言缺失值插补之simputation包,支持管道符,使用起来非常简单且优雅,而且支持的方法的也非常多。...table(is.na(df)) ## ## FALSE TRUE ## 33 7 均值插补: # 用每一列的均值插补 df1 x){...: # 用每一列的中位数插补 df2 x){ x[is.na(x)] x, na.rm=T) x }) table(is.na...此外,缺失值插补在cran的task view里面有一个专题:Missing Data,大家感兴趣的可以自己查看,里面有R语言所有和缺失值插补有关的R包介绍!

    1.2K50
    领券