首页
学习
活动
专区
圈层
工具
发布

(六)Python:Pandas中的DataFrame

DataFrame也能自动生成行索引,索引从0开始,代码如下所示: import pandas as pd data = {'name': ['aaaaaa', 'bbbbbb', 'cccccc']...DataFrame除了能创建自动生成行索引外,还能自定义生成行索引,代码如下所示:  import pandas as pd import numpy as np data = np.array([(... 6000 使用 索引与值                 我们可以通过一些基本方法来查看DataFrame的行索引、列索引和值,代码如下所示: import pandas as pd import...1, stop=4, step=1) 值 [['aaaa' '4000']  ['bbbb' '5000']  ['cccc' '6000']]         除了进行查看,我们还能简单的对行索引和列索引进行修改...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。

6.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Elasticsearch 通过Scroll遍历索引,构造pandas dataframe 【Python多进程实现】

    首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程。...笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用时14秒左右。每个分片用一个进程查询数据,最后拼接出完整的结果。...由于返回的json数据量较大,每次100多万到200多万,如何快速根据json构造pandas 的dataframe是个问题 — 笔者测试过read_json()、json_normalize()、DataFrame...(eval(pandas_json))及DataFrame.from_dict(),from_dict()速度最快 转载请注明出处:https://www.cnblogs.com/NaughtyCat/...5年内把代码写好,技术博客字字推敲,坚持零拷贝和原创 写博客的意义在于打磨文笔,训练逻辑条理性,加深对知识的系统性理解;如果恰好又对别人有点帮助,那真是一件令人开心的事 ****************

    1.9K21

    Python Pandas中DataFrame合并时的索引错位问题排查与解决

    前言日常工作中经常使用Python的Pandas库处理数据。...排查步骤步骤一:检查DataFrame的索引我首先查看了两个DataFrame的索引情况,发现df2的索引并不是从0开始连续的,而是跳过了某些值。...当使用pd.merge时,Pandas默认保留原始索引,这可能导致某些行在合并时没有正确对齐。...它提醒我在使用Pandas进行数据合并时,不仅要关注字段的匹配,还要注意索引的一致性。尤其是在从不同来源加载数据时,索引可能不一致,从而影响合并结果。...避免依赖默认的索引行为,显式指定索引可以提高代码的可读性和健壮性。对关键数据进行验证,确保合并后的结果符合预期。总的来说,Pandas是一个非常强大的工具,但它的灵活性也带来了潜在的风险。

    22410

    数据分析工具Pandas1.什么是Pandas?2.Pandas的数据结构SeriesDataFrame3.Pandas的索引操作索引对象IndexSeries索引DataFrame索引高级索引:标签

    文章来源:Python数据分析 参考学习资料: http://pandas.pydata.org 1.什么是Pandas Pandas的名称来自于面板数据(panel data)和Python数据分析...Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一。...的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的 对象...:标签、位置和混合 Pandas的高级索引有3种 1. loc 标签索引 DataFrame 不能直接切片,可以通过loc来做切片 loc是基于标签名的索引,也就是我们自定义的索引名 示例代码...索引操作,可将其看作ndarray的索引操作 标签的切片索引是包含末尾位置的 ---- 4.Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充

    4.7K20

    Python基础 | 为什么需要Pandas的DataFrame类型

    前面几篇文章已经介绍了Python自带的list()以及强大的numpy提供的ndarray类型,这些数据类型还不够强大吗?为什么还需要新的数据类型呢?...Pandas的DataFrame类型 Pandas是Python开发中常用的第三方库,DataFrame是其中最常用的数据类型,是一种存放数据的容器。...而在python中存放数据常见的有list()以及numpy中功能更加强大的numpy.ndarray(),但是为什么还要使用DataFrame呢?...首先编写采集电影基本数据的代码: df = pandas.DataFrame(columns=['video_name', 'video_url', 'video_score']) for i in...结语 本文介绍了用Pandas的DataFrame类型来存储电影数据集的数据,并介绍了DataFrame提供的非常方便的数据操作。

    1.3K60

    Python基础 | 为什么需要Pandas的DataFrame类型

    前面几篇文章已经介绍了Python自带的list()以及强大的numpy提供的ndarray类型,这些数据类型还不够强大吗?为什么还需要新的数据类型呢?...Pandas的DataFrame类型 Pandas是Python开发中常用的第三方库,DataFrame是其中最常用的数据类型,是一种存放数据的容器。...而在python中存放数据常见的有list()以及numpy中功能更加强大的numpy.ndarray(),但是为什么还要使用DataFrame呢?...首先编写采集电影基本数据的代码: df = pandas.DataFrame(columns=['video_name', 'video_url', 'video_score']) for i in...结语 本文介绍了用Pandas的DataFrame类型来存储电影数据集的数据,并介绍了DataFrame提供的非常方便的数据操作。 where2go 团队 ----

    1.5K30

    用python的pandas打开csv文件_如何使用Pandas DataFrame打开CSV文件 – python

    然后照常读取文件: import pandas csvfile = pandas.read_csv(‘file.csv’, encoding=’utf-8′) 如何使用Pandas groupby在组上添加顺序计数器列...– python 我觉得有比这更好的方法:import pandas as pd df = pd.DataFrame( [[‘A’, ‘X’, 3], [‘A’, ‘X’, 5], [‘A’, ‘Y’..., 7], [‘A’, ‘Y…R’relaimpo’软件包的Python端口 – python 我需要计算Lindeman-Merenda-Gold(LMG)分数,以进行回归分析。...我发现R语言的relaimpo包下有该文件。不幸的是,我对R没有任何经验。我检查了互联网,但找不到。这个程序包有python端口吗?如果不存在,是否可以通过python使用该包?...– python 我的Web服务器的API日志如下:started started succeeded failed 那是同时收到的两个请求。很难说哪一个成功或失败。

    15.8K30

    python下的Pandas中DataFrame基本操作(二),DataFrame、dict、array构造简析

    DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。...导入基本python库: import numpy as np import pandas as pd DataFrame构造:   1:直接传入一个由等长列表或NumPy数组组成的字典; dict...第一种:两个不同列表转换成为数据框 from pandas.core.frame import DataFrame a=[1,2,3,4]#列表a b=[5,6,7,8]#列表b c={"a" : a,...7 3 4 8 第二种:将包含不同子列表的列表转换为数据框 from pandas.core.frame import DataFrame a=[[1,2,3,4],[5,6,7,8]]#包含两个不同的子列表...参考资料:《利用Python进行数据分析》 在一个空的dataframe中插入数据 def test(): LIST=[1,2,3,4] empty = pd.DataFrame(columns

    6.1K30

    python下的Pandas中DataFrame基本操作,基本函数整理

    参考链接: Pandas DataFrame中的转换函数 pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍...谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。   ...)以布尔的方式返回空值DataFrame.notnull()以布尔的方式返回非空值    索引和迭代    方法描述DataFrame.head([n])返回前n行数据DataFrame.at快速标签常量访问器...DataFrame.iter()Iterate over infor axisDataFrame.iteritems()返回列名和序列的迭代器DataFrame.iterrows()返回索引和序列的迭代器...参考文献:     http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe          <link rel="stylesheet

    3.7K00

    python下的Pandas中DataFrame基本操作(一),基本函数整理

    pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程中,我发现书中的内容还只是冰山一角...谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。...() 以布尔的方式返回空值 DataFrame.notnull() 以布尔的方式返回非空值 索引和迭代 方法 描述 DataFrame.head([n]) 返回前n行数据 DataFrame.at 快速标签常量访问器...() 返回索引和序列的迭代器 DataFrame.itertuples([index, name]) Iterate over DataFrame rows as namedtuples, with index...参考文献: http://pandas.pydata.org/pandas-docs/stable/api.html#dataframe

    11.9K80

    使用Spyder进行动态网页爬取:实战指南

    爬取知乎数据为决策和创新提供强有力的支持。 概述 在爬虫领域,Spyder扮演着重要的角色。它提供了强大的代码编辑器、调试器和数据处理工具,使得爬虫程序的编写和调试更加高效。...对于爬虫这样的动态网页,Spyder的功能通过Spyder,我们可以发送网络请求、解析HTML页面、处理数据,并且可以使用代理服务器来防止反爬。...在Python中,我们可以使用requests库发送网络请求,使用BeautifulSoup库解析HTML页面,使用pandas库进行数据处理等等。...通过以下代码导入所需的库: Python 复制 import requests from bs4 import BeautifulSoup import pandas as pd 发送网络请求:使用requests...以下是一个示例代码: Python 复制 data = pd.DataFrame({'Title': titles, 'Author': authors}) 循环爬取:如果我们需要爬取多个页面的数据,

    42710

    数据分析师最爱的脚本语言--Python,你会了吗?

    作为机器学习系列分享的导引内容,不介绍Python语言的数据类型,语法等基础知识,直接对机器学习三个最基础的包:Numpy,Pandas,Sklearn (Scikit-Learn)进行演示。...安装完成,打开Spyder编辑器或者Jupyter Notebook,什么,找不到?喏,看下图。 打开的Spyder编辑器如下图所示,十分友好,与RStudio布局十分相似。...取最大运算: 7 Pandas Numpy在实际数据操作过程中给我们提供了很多方便,但是大多数情况下,我们需要从外部文件中获取原数据,虽然存取数据的方式有很多,但是Pandas包绝对是你不容错过的一款...另外,Pandas包的强大远不止于此,其高效的DataFrame数据结构,具有行列标签的数组,是重多从事数据科学人员的最舒适的结构。...总结 做一篇Python数据分析的完整教程需要耗费的心血远远超出作者的预期,本篇旨在提供一片入门级的教程,希望缩减后的内容可以被读者更容易接收和理解,通过试着运行本篇代码,降低对Python的陌生感。

    92220

    机器学习编辑器的选择:Spyder

    「个人感想」 ❝看到Udemy中机器学习的教程,讲师用的是Rstudio操作的R,用的是Spyder操作的Python,惊艳了我。决定学习一下这个编辑器的操作,做一下记录。 ❞ ? 1....Spyder编辑器介绍 Spyder是一个强大的科学环境是用Python编写编辑器,由科学家,工程师和数据分析师所设计。...此外,Spyder还内置集成了许多流行的科学软件包,包括NumPy、SciPy、Pandas、IPython、QtConsole、Matplotlib、Sympy等等。 2....用R语言的习惯去套用python,用Rstudio的思路去套用Spyder,都会有这种问题,学习一个东西,就用最地道的方式学习吧! ❞ 7....一个简单的机器学习示例 这是一个资料里面的数据和代码,刚开始先键入别人的代码,然后再自己键入代码,真的是需要键入1万行代码后,才会熟悉python常用的方法,常用的格式,常用的套路。

    2.7K31
    领券