首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Spark将Dataframe数据写入Hive分区表的方案

欢迎您关注《大数据成神之路》 DataFrame 将数据写入hive中时,默认的是hive默认数据库,insert into没有指定数据库的参数,数据写入hive表或者hive表分区中: 1、将DataFrame...数据写入到hive表中 从DataFrame类中可以看到与hive表有关的写入API有一下几个: registerTempTable(tableName:String):Unit, inserInto(...,就可以将DataFrame数据写入hive数据表中了。...2、将DataFrame数据写入hive指定数据表的分区中 hive数据表建立可以在hive上建立,或者使用hiveContext.sql("create table....")...,使用saveAsTable时数据存储格式有限,默认格式为parquet,将数据写入分区的思路是:首先将DataFrame数据写入临时表,之后由hiveContext.sql语句将数据写入hive分区表中

16.4K30

【疑惑】如何从 Spark 的 DataFrame 中取出具体某一行?

如何从 Spark 的 DataFrame 中取出具体某一行?...我们可以明确一个前提:Spark 中 DataFrame 是 RDD 的扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 的操作来取出其某一行。...但是现在我有个需求,分箱,具体来讲,需要『排序后遍历每一行及其邻居比如 i 与 i+j』,因此,我们必须能够获取数据的某一行! 不知道有没有高手有好的方法?我只想到了以下几招!...1/3排序后select再collect collect 是将 DataFrame 转换为数组放到内存中来。但是 Spark 处理的数据一般都很大,直接转为数组,会爆内存。...有能力和精力了应该去读读源码,看看官方怎么实现的。 期待有朋友有更好的方法指点!这个问题困扰了我很久!

4.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    大数据技术之_19_Spark学习_03_Spark SQL 应用解析小结

    3、Spark SQL 可以执行 SQL 语句,也可以执行 HQL 语句,将运行的结果作为 Dataset 和 DataFrame(将查询出来的结果转换成 RDD,类似于 hive 将 sql 语句转换成...4、DataSet 是 Spark 最新的数据抽象,Spark 的发展会逐步将 DataSet 作为主要的数据抽象,弱化 RDD 和 DataFrame。...2、你可以通过 Spark 提供的方法读取 JSON 文件,将 JSON 文件转换成 DataFrame。...// 对于相同的输入一直有相同的输出     override def deterministic: Boolean = true     // 用于初始化你的数据结构     override def...========== Spark SQL 的输入和输出 ========== 1、对于 Spark SQL 的输入需要使用 sparkSession.read 方法 (1)通用模式 sparkSession.read.format

    1.5K20

    Spark的Ml pipeline

    Pipeline的概念主要是受scikit-learn启发。 DataFrame:这个ML API使用Spark SQL 的DataFrame作为一个ML数据集,它可以容纳各种数据类型。...这些stage是按照顺序执行的,输入的dataframe当被传入每个stage的时候会被转换。对于Transformer stages,transform()方法会被调用去操作Dataframe。...我们用简单的文本文档工作流来说明这一点。 ? 在上面,最上面一行代表一个Pipeline有三个阶段。...最下面一行代表流经管道的数据,其中圆柱表示DataFrames。Pipeline.fit()方法被调用操作原始DataFrame,其包含原始文档和标签上。...该图目前是基于每个stage的输入和输出列名(通常指定为参数)隐含指定的。如果Pipeline形成为DAG,那么stage必须按拓扑顺序指定。

    2.6K90

    Spark SQL重点知识总结

    ,可以认为是一张二维表格,劣势在于编译器不进行表格中的字段的类型检查,在运行期进行检查 4、DataSet是Spark最新的数据抽象,Spark的发展会逐步将DataSet作为主要的数据抽象,弱化RDD...提供的方法读取json文件,将json文件转换成DataFrame 3、可以通过DataFrame提供的API来操作DataFrame里面的数据。...4、可以通过将DataFrame注册成为一个临时表的方式,来通过Spark.sql方法运行标准的SQL语句来查询。...六、Spark SQL的数据源 输入 对于Spark SQL的输入需要使用sparkSession.read方法 1、通用模式 sparkSession.read.format("json").load...输出 对于Spark SQL的输出需要使用 sparkSession.write方法 1、通用模式 dataFrame.write.format("json").save("path") 支持类型

    1.8K31

    Spark的Streaming和Spark的SQL简单入门学习

    根据其官方文档介绍,Spark Streaming有高吞吐量和容错能力强等特点。...b、Output Operations on DStreams:     Output Operations可以将DStream的数据输出到外部的数据库或文件系统,当某个Output Operations...hadoop world spark world flume world hello world 看第二行的窗口是否进行计数计算; ---- 1、Spark SQL and DataFrame a...Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。 b、为什么要学习Spark SQL?   ...、age,用空格分隔,然后上传到hdfs上 hdfs dfs -put person.txt / 2.在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割 val lineRDD

    95290

    Structured Streaming 编程指南

    你将使用类似对于静态表的批处理方式来表达流计算,然后 Spark 以在无限表上的增量计算来运行。 基本概念 将输入的流数据当做一张 “输入表”。把每一条到达的数据作为输入表的新的一行来追加。 ?...为了说明这个模型的使用,让我们来进一步理解上面的快速示例: 最开始的 DataFrame lines 为输入表 最后的 DataFrame wordCounts 为结果表 在流上执行的查询将 DataFrame...在这个模型中,当有新数据时,Spark负责更新结果表,从而减轻用户的工作。作为例子,我们来看看该模型如何处理 event-time 和延迟的数据。...某些操作,比如 map、flatMap 等,需要在编译时就知道类型,这时你可以将 DataFrame 转换为 Dataset(使用与静态相同的方法)。...根据 output 模式,每次触发后,更新的计数(即紫色行)都将作为触发输出进行写入到 sink。 某些 sink(例如文件)可能不支持 update mode 所需的细粒度更新。

    2K20

    SparkSQL

    一、概述 1、简介 Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。...Spark on Hive:Hive只作为存储元数据,Spark负责SQL解析优化,语法是Spark SQL语法,Spark底层采用优化后的df或者ds执行。...三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action行动算子如foreach时,三者才会开始遍历运算。 三者有许多共同的函数,如filter,排序等。...在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式: 通过Spark的数据源进行创建; val spark: SparkSession...Aggregator[Long, Buff, Double] { // 初始化缓冲区 override def zero: Buff = Buff(0L, 0L) // 将输入的年龄和缓冲区的数据进行聚合

    35050

    Spark Extracting,transforming,selecting features

    ,NGram类将输入特征转换成n-grams; NGram将字符串序列(比如Tokenizer的输出)作为输入,参数n用于指定每个n-gram中的项的个数; from pyspark.ml.feature...,输出一个单向量列,该列包含输入列的每个值所有组合的乘积; 例如,如果你有2个向量列,每一个都是3维,那么你将得到一个9维(3*3的排列组合)的向量作为输出列; 假设我们有下列包含vec1和vec2两列的...的LSH模型都有方法负责每个操作; 特征转换 特征转换是一个基本功能,将一个hash列作为新列添加到数据集中,这对于降维很有用,用户可以通过inputCol和outputCol指定输入输出列; LSH也支持多个...,它包含每一对的真实距离; 近似最近邻搜索 近似最近邻搜索使用数据集(特征向量集合)和目标行(一个特征向量),它近似的返回指定数量的与目标行最接近的行; 近似最近邻搜索同样支持转换后和未转换的数据集作为输入...,如果输入未转换,那么会自动转换,这种情况下,哈希signature作为outputCol被创建; 一个用于展示每个输出行与目标行之间距离的列会被添加到输出数据集中; 注意:当哈希桶中没有足够候选数据点时

    21.9K41

    SparkSQL快速入门系列(6)

    SQL风格 DataFrame的一个强大之处就是我们可以将它看作是一个关系型数据表,然后可以通过在程序中使用spark.sql() 来执行SQL查询,结果将作为一个DataFrame返回 如果想使用SQL...spark中的自定义函数有如下3类 1.UDF(User-Defined-Function) 输入一行,输出一行 2.UDAF(User-Defined Aggregation Funcation)...输入多行,输出一行 3.UDTF(User-Defined Table-Generating Functions) 输入一行,输出多行 5.2....override def dataType: DataType = { DoubleType } //确定是否相同的输入会有相同的输出 override def deterministic...●聚合函数和开窗函数 聚合函数是将多行变成一行,count,avg… 开窗函数是将一行变成多行; 聚合函数如果要显示其他的列必须将列加入到group by中 开窗函数可以不使用group by,直接将所有信息显示出来

    2.4K20

    PySpark UD(A)F 的高效使用

    这两个主题都超出了本文的范围,但如果考虑将PySpark作为更大数据集的panda和scikit-learn的替代方案,那么应该考虑到这两个主题。...举个例子,假设有一个DataFrame df,它包含10亿行,带有一个布尔值is_sold列,想要过滤带有sold产品的行。...这还将确定UDF检索一个Pandas Series作为输入,并需要返回一个相同长度的Series。它基本上与Pandas数据帧的transform方法相同。...作为输入列,传递了来自 complex_dtypes_to_json 函数的输出 ct_cols,并且由于没有更改 UDF 中数据帧的形状,因此将其用于输出 cols_out。...作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。

    19.7K31

    【技术分享】Spark DataFrame入门手册

    后面会把相关方法、接口跟大家一一道来。 二、初步使用 大家学习一门语言可能都是从“hello word!”开始的,这主要目的是让学习者熟悉程序运行的环境,同时亲身感受程序运行过程。...导入spark运行环境相关的类 1.jpg 所有spark相关的操作都是以sparkContext类作为入口,而Spark SQL相关的所有功能都是以SQLContext类作为入口。...下面的语句是新建入口类的对象。最下面的语句是引入隐式转换,隐式的将RDD转换为DataFrame。...collect() ,返回值是一个数组,返回dataframe集合所有的行 2、 collectAsList() 返回值是一个java类型的数组,返回dataframe集合所有的行 3、 count(...11、 toDF()返回一个新的dataframe类型的 12、 toDF(colnames:String*)将参数中的几个字段返回一个新的dataframe类型的, 13、 unpersist()

    5.1K60

    Apache Spark 2.2.0 中文文档 - Structured Streaming 编程指南 | ApacheCN

    接下来,我们使用 .as[String] 将 DataFrame 转换为 String 的 Dataset ,以便我们可以应用 flatMap 操作将每 line (行)切分成多个 words 。...(无界) 输入表上运行它作为 incremental(增量) 查询。...Input Sources (输入源) 在 Spark 2.0 中,有一些内置的 sources 。 File source(文件源) - 以文件流的形式读取目录中写入的文件。...Output Sinks (输出接收器) 有几种类型的内置输出接收器。 File sink (文件接收器) - 将输出存储到目录中。...你必须实现接口 ForeachWriter (Scala/Java 文档) 其具有在 trigger (触发器)之后生成 sequence of rows generated as output (作为输出的行的序列

    5.3K60

    从Spark MLlib到美图机器学习框架实践

    Estimator Estimator 抽象了从输入数据学习模型的过程,每个 Estimator 都实现了 fit 方法,用于给定 DataFrame 和 Params 后,生成一个 Transformer...,用于将输入经过 Pipeline 的各个 Transformer 的变换后,得到最终输出。...20Pipeline.md CrossValidator 将数据集按照交叉验证数切分成 n 份,每次用 n-1 份作为训练集,剩余的作为测试集,训练并评估模型,重复 n 次,得到 n 个评估结果,求 n...,通常是在输入的 DataFrame 上添加一列或多列。...对于单输入列,单输出列的 Transformer 可以继承自 UnaryTransformer 类,并实现其中的 createTransformFunc 方法,实现对输入列每一行的处理,并返回相应的输出

    1.1K30

    从Spark MLlib到美图机器学习框架实践

    Estimator Estimator 抽象了从输入数据学习模型的过程,每个 Estimator 都实现了 fit 方法,用于给定 DataFrame 和 Params 后,生成一个 Transformer...,用于将输入经过 Pipeline 的各个 Transformer 的变换后,得到最终输出。...20Pipeline.md CrossValidator 将数据集按照交叉验证数切分成 n 份,每次用 n-1 份作为训练集,剩余的作为测试集,训练并评估模型,重复 n 次,得到 n 个评估结果,求 n...,通常是在输入的 DataFrame 上添加一列或多列。...对于单输入列,单输出列的 Transformer 可以继承自 UnaryTransformer 类,并实现其中的 createTransformFunc 方法,实现对输入列每一行的处理,并返回相应的输出

    93810

    第三天:SparkSQL

    第1章 Spark SQL概述 什么是Spark SQL Spark SQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和DataSet,并且作为分布式SQL查询引擎的作用...DataFrame 创建在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:通过Spark的数据源进行创建;从一个存在的RDD进行转换...= [age: bigint, name: string] 对DataFrame创建一个临时表,View是只读的,Table有改的意思哦。...DataFrame也可以叫DataSet[Row],每一行类型都是Row,不解析每一行究竟有那些字段,每个字段又是什么类型无从得知,只能通上面提到的getAs方法或者共性的第七条的模式匹配来拿出特定的字段...并且可以通过format()来指定输入输出文件格式。

    13.2K10

    Spark Pipeline官方文档

    ,比如一个DataFrame可以有不同类型的列:文本、向量特征、标签和预测结果等; Transformer:转换器是一个可以将某个DataFrame转换成另一个DataFrame的算法,比如一个ML模型就是一个将...,每一阶段都是一个转换器或者预测器,这些阶段按顺序执行,输入的DataFrame在每一阶段中都被转换,对于转换器阶段,transform方法作用于DataFrame,对于预测器阶段,fit方法被调用并产生一个转换器...,圆柱体表示DataFrame,Pipeline的fit方法作用于包含原始文本数据和标签的DataFrame,Tokenizer的transform方法将原始文本文档分割为单词集合,作为新列加入到DataFrame...中,HashingTF的transform方法将单词集合列转换为特征向量,同样作为新列加入到DataFrame中,目前,LogisticRegression是一个预测器,Pipeline首先调用其fit...DAG,那么是有可能创建非线性的Pipeline的,这个图是当前指定的基于每个阶段的输入输出列名(通常作为参数指定),如果Pipeline来自DAG,那么各个阶段必须符合拓扑结构顺序; 运行时检查:由于

    4.7K31
    领券