日前,第11届PostgreSQL中国技术大会圆满落幕,大会上腾讯云多位顶级技术达人携手亮相,分别对腾讯云PostgreSQL系列产品技术亮点和创新实践案例进行了深入解读,针对TDSQL-C PostreSQL高可用特性、TDSQL-A发展历程、技术架构等做出了详细介绍。 会上腾讯云数据库开源产品TDSQL PostgreSQL版(开源代号Tbase)再次公布升级:分区表能力增强,分区剪枝性能提升30%,分布区表关联查询性能(Join)提升超十倍。此外,异地多活易用性增强、分布式死锁自动检测并解锁功能上线
翻译:[原文地址](https://www.upwork.com/resources/nosql-vs-sql#use-nosql)。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51783410
沃趣科技作为服务国内B端企业的数据库产品和解决方案的国产厂商,多年与传统企业打交道,深知传统企业目前正面临着互联网应用和数字化全面转型的挑战。我们了解到CIO眼里最重要的规划之一,就是如何根据企业自身的业务特点打造合适的私有云平台,来适应日新月异的应用场景变化,快速推出满足市场需求的应用。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
作为云原生技术先驱,腾讯云数据库内核团队致力于不断提升产品的可用性、可靠性、性能和可扩展性,为用户提供更加极致的体验。为帮助用户了解极致体验背后的关键技术点,本期带来腾讯云数据库专家工程师王鲁俊给大家分享的腾讯云原生数据库TDSQL-C的架构探索和实践,内容主要分为四个部分: 本次分享主要分为四个部分: 第一部分,介绍腾讯云原生数据库 TDSQL-C 产品架构,包括产品的研发背景和架构主要特性; 第二部分,分享用户场景实践,针对线上真实的用户场景做一些分析和针对性实践; 第三部分,分享系统关键优化; 第四部
如果你使用过 Google 或 YouTube,那么你很可能已经访问过分片数据。分片通过将数据分区存储在多个服务器上,而不是将所有内容放在一个巨大的服务器上,以实现扩展数据库的目的。这篇文章将介绍数据库分片的工作原理、思考如何给你自己的数据库分片,以及其他一些有用的、可以提供帮助的工具,尤其是针对 MySQL 和 Postgres。
Robinhood 的使命是使所有人的金融民主化。Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础。我们有各种数据源——OLTP 数据库、事件流和各种第 3 方数据源。需要快速、可靠、安全和以隐私为中心的数据湖摄取服务来支持各种报告、关键业务管道和仪表板。不仅在数据存储规模和查询方面,也在我们在数据湖支持的用例方面,我们从最初的数据湖版本[1]都取得了很大的进展。在这篇博客中,我们将描述如何使用各种开源工具构建基于变更数据捕获的增量摄取,以将我们核心数据集的数据新鲜延迟从 1 天减少到 15 分钟以下。我们还将描述大批量摄取模型中的局限性,以及在大规模操作增量摄取管道时学到的经验教训。
内容来源:2017 年 12 月 21 日,驻云科技资深架构师翟永东在“云时代企业架构的搭建”进行《云上架构如何实现高性能和高可用》演讲分享。IT 大咖说(微信id:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。 阅读字数:2851 | 8分钟阅读 摘要 云上架构需要关注多方面的因素,本次主要讲的是高可用和高性能,从这两方面展开深度的解析如何搭建完善的云上架构。 嘉宾演讲视频及PPT回顾:http://suo.im/4sKQd8 云上架构概述 云上搭建架构不单单需要考虑到性能和可用性
从本篇开始,介绍使用Kettle实现Hadoop数据仓库的ETL过程。我们会引入一个典型的订单业务场景作为示例,说明多维模型及其相关ETL技术在Kettle上的具体实现。本篇首先介绍一个小而典型的销售订单示例,描述业务场景,说明示例中包含的实体和关系,并在MySQL数据库上建立源数据库表并生成初始的数据。我们要在Hive中创建源数据过渡区和数据仓库的表,因此需要了解与Hive创建表相关的技术问题,包括使用Hive建立传统多维数据仓库时,如何选择适当的文件格式,Hive支持哪些表类型,向不同类型的表中装载数据时具有哪些不同特性。我们将以实验的方式对这些问题加以说明。在此基础上,我们就可以编写Hive的HiveQL脚本,建立过渡区和数据仓库中的表。本篇最后会说明日期维度的数据装载方式及其Kettle实现。
通过阿里云数据传输,并使用 dts-ads-writer 插件, 可以将您在阿里云的云数据库RDS for MySQL中数据表的变更实时同步到分析型数据库中对应的实时写入表中(RDS端目前暂时仅支持MySQL引擎)。 前提条件 您需要在您RDS for MySQL所在的云账号下开通阿里云数据传输服务。并 点击此处 下载dts-ads-writer插件到您的一台服务器上并解压(需要该服务器可以访问互联网,建议使用阿里云ECS以最大限度保障可用性)。服务器上需要有Java 6或以上的运行环境(JRE/JDK)。
一个租户就是一个客户,例如我们开发的产品是给到某个企业使用,那么该企业就是我们的一个租户。
◆ 简介 一个有趣的面试问题,我已经听到并问过很多次了。 "你将如何提高数据库的性能?" 这个问题可能有很多答案,因为我想深入了解每个答案,所以我将分别写三篇文章,每篇都针对某一类答案。 这个要更注重架构层面的变化,管理服务等。他们会更关注云计算架构师或对系统设计概念有良好了解的人。 第三组答案将更注重于数据库和操作系统的配置。 请记住,这是一个非常广泛的话题,这是我对如何回答这个问题的看法,我将提供进一步阅读的链接,并尽可能多地提供实际的例子。 ◆ 问题 问题是,"我的数据库越来越慢,你将如何提高数据
前面我们在介绍TCGA数据库数据挖掘的时候,课程中使用了人了所有miRNA的ID号。
前面文章中,我们用Kettle工具实现了Hadoop多维数据仓库的基本功能,如使用Sqoop作业项、SQL脚本、Hadoop file output、ORC output等步骤实现ETL过程,使用Oozie、Start作业项定期执行ETL任务等。本篇将继续讨论常见的维度表技术,以最简单的“增加列”开始,继而讨论维度子集、角色扮演维度、层次维度、退化维度、杂项维度、维度合并、分段维度等基本的维度表技术。这些技术都是在实际应用中经常使用的。在说明这些技术的相关概念和使用场景后,我们以销售订单数据仓库为例,给出Kettle实现和测试过程。
导语 | 数据库正处在变革期,变革的动力同时来自于外因和内因,外因是用户需求的变化,内因是新技术的爆发。用户需求从强调物理上拥有数据到逻辑上拥有数据,因此云服务的形式被越来越广泛地接受;新技术的爆发体现在新的存储介质的产品化。腾讯云原生数据库就是这种变革的产物,腾讯云原生数据库以云服务的方式提供更好的数据库性能,可用性和可靠性。本文由腾讯云数据库技术总监 张青林在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」 的《腾讯云TDSQL-C架构探索和实践》演讲分享
十一、多重星型模式 从“进阶技术”开始,已经通过增加列和表扩展了数据仓库,在进阶技术(五) “快照”里增加了第二个事实表,month_end_sales_order_fact表。这之后数据仓库模式就有了两个事实表(第一个是在开始建立数据仓库时创建的sales_order_fact表)。有了这两个事实表的数据仓库就是一个标准的双星型模式。 本节将在现有的维度数据仓库上再增加一个新的星型结构。与现有的与销售关联的星型结构不同,新的星型结构关注的是产品业务领域。新的星型结构有一个事实表和一个维度表,用于存储数据仓库中的产品数据。 1. 一个新的星型模式 下图显示了扩展后的数据仓库模式。
数据的迁移就像搬家,基本每个用过手机的人都做过数据迁移,将旧智能手机中的电话号码、照片、微信聊天记录导入到另一台新的智能手机。因此数据迁移并不神秘。在上云的过程中,因数据的量更大、数据重要性更大、专业性更强,因此在公有云上诞生了“云迁移”这项目服务,在公有云市场也有上百个云服务商专业做“云迁移”服务。今天我们来讲三种常用的云数据库迁移方法。
NoSQL 数据库和关系型数据库在数据存储、处理方式上有显著的区别,主要体现在数据模型、扩展性、数据存储方式、事务支持、查询能力等方面。NoSQL数据库主要适用于大数据和实时的网络应用,而关系型数据库适用于需要复杂事务支持的应用系统。
最近数据库行业还是发生一些事情,例如:NebulaGraph获得获得数千万美元的A轮融资,Oracle将在AWS支持MySQL HeatWave服务,VLDB 2022在悉尼举行,来自中国多篇成果被接收,等等,查看原文
上一篇详细讲解了如何用Canal和Kafka,将MySQL数据实时全量同步到Greenplum。对照本专题第一篇中图1-1的数据仓库架构,我们已经实现了ETL的实时抽取过程,将数据同步到RDS中。本篇继续介绍如何实现后面的数据装载过程。实现实时数据装载的总体步骤可归纳为:
OLAP 是一个很卷的赛道,创业公司也众多。在本文中,笔者基于 10+ 年的大数据与数据仓库的工作经验,就目前的主流趋势:离在线一体化、引擎一体化、云原生化等写一些思考,抛砖引玉,希望能与各位共同探讨。
DTS 作为数据交互引擎,以其高效的实时数据流处理能力和广泛的数据源兼容性,为用户构建了一个安全可靠、可扩展、高可用的数据架构桥梁。云数据库 SelectDB 通过与 DTS 联合,为用户提供了简单、实时、极速且低成本的事务数据分析方案。用户可以通过 DTS 数据传输服务,一键将自建 MySQL / RDS MySQL / PolarDB for MySQL 数据库,迁移或同步至云数据库 SelectDB 的实例中,帮助企业在短时间内完成数据迁移或同步,并即时获得深度洞察。
最近在工作中我需要把数据从公共的 Data Warehouse(数据仓库)导出来,放到属于我们 team 自己账号的云端存储资源中去,然后再在我们的应用中查询这样的资源。需要导出数据是因为直接从 Data Warehouse 查询数据是一个缓慢而且异步的过程,而我们的应用数据查询需要实时性。现在要解决这个问题有一些 AWS 的服务可供我们可以选择,基本上分成了两大类:
云原生数据库是一种通过云平台进行构建、部署和分发的服务。作为一种云平台,云原生数据库以PaaS的形式进行分发,也经常被称作DBaaS;用户可以将该平台用于多种目的,例如存储,管理和提取数据。
随着各行各业电子信息化的不断加深,线上交易数据保持了长时间高速增长的态势,对数据存储的需求越来越大,数据库管理系统(DBMS)面临越来越大的性能、空间和稳定性压力。在此过程中,得利于计算&存储&网络等硬件领域的不断进步,业界流行的数据库管理系统逐步从单机架构向分布式架构演变。笔者希冀从梳理数据库管理系统所面临的一个又一个实际挑战及业界所提出的诸多解决方案的过程中,发现片缕灵感以指引未来的数据库开发工作。
本文通过分析2023年5月15日的腾讯财报数据,从多个方面揭示了腾讯在2023年5月15日所呈现的财务、经营和战略状况。
1、 S3(Simple Storage Service) a) 对象存储服务 b) 存储任意类型文件 c) 存储桶:可控制对存储桶的访问权限,名称全局唯一,最多100个 d) 对象:单个对象最多5TB e) 对象键:标识唯一 f) S3的存储桶和S3默认私有,只有资源拥有者可访问
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/80269362
应用程序都离不开数据库,那不同的数据结构,就会存放在不同的数据数据库中,所以数据库按数据结构分为关系型数据库和非关系型数据库。接下来就总结一下这两者的区别吧。
今天我们来介绍一下工作开发中常见的一些NoSQL数据库及其基本特点。欢迎在评论区留下文章中没有介绍且好用的NOSQL数据库🤞。
本篇重点是针对销售订单示例创建并测试数据装载的Kettle作业和转换。在此之前,先简要介绍数据清洗的概念,并说明如何使用Kettle完成常见的数据清洗工作。由于本示例中Kettle在Hadoop上的ETL实现依赖于Hive,所以之后对Hive做一个概括的介绍,包括它的体系结构、工作流程和优化。最后用完整的的Kettle作业演示如何实现销售订单数据仓库的数据转换与装载。
从本篇起,我们就开始对『数据库』相关概念内容的介绍,除了介绍基本的名词概念以及他们的使用情况外,我们还会深入到源码层面去探究一些底层实现,例如索引、视图、触发器等技术在数据库引擎层是如何支持的。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yYfd67AX-1616633798599)(20210319_分布式NoSQL列存储数据库Hbase(四).assets/image-20210317190105892.png)]
热备:备份设备与主设备一起工作运转,当主设备故障时,备份设备能立即取代主设备的工作
使用 MySQLdump 工具的优点是简单易用、容易上手,缺点是停机时间较长,因此它适用于数据量不大,或者允许停机的时间较长的情况。
详见: https://www.cnblogs.com/NorthPoet/p/16901095.html
6月20-25日,数据库国际顶会2021 ACM SIGMOD在西安举行。本届大会上,腾讯云数据库技术总监邱敏带来了主题为“腾讯云数据库技术演变之路”的演讲。 演讲视频 以下为演讲内容的文字实录: 数据库是三大基础软件之一。近年来,腾讯也在不断加强各类数据库产品的研发投入。企业级分布式数据库TDSQL是腾讯云数据库的代表性产品,同时具备OLTP、OLAP,以及混合OLTP和OLAP的HTAP能力。它包括以下几个系列的产品: 企业级MySQL即腾讯云数据库RDS系统(CDB),相对原生MySQL进行
前文数据库容器化|未来已来我们介绍了基于Kubernetes实现的下一代私有 RDS。其中,调度策略是具体实现时至关重要的一环,它关系到RDS 集群的服务质量和部署密度。那么,RDS 需要怎样的调度策略呢?本文通过数据库的视角结合Kubernetes的源码,分享一下我的理解。
针对PolarDB for PostgreSQL 提出的特性,其中PG原生数据库最大的问题之一是磁盘空间占用的问题,相对于其他的数据库产品PostgreSQL 数据库会在使用中占用更多的磁盘空间,这是人尽皆知的问题,其他的两个问题也需要进行测试,通过测试来验证PolarDB for PostgreSQL产品是否和宣传的比PostgreSQL RDS产品更具竞争力。
大数据技术当中,在海量数据的存储环节,涉及到两个重要的概念,就是分布式数据存储与数据库,稳定高效安全的数据存储,才能为后续的计算分析环节,提供稳固的支持。今天的大数据概念解析,我们来讲讲分布式存储与数据库。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wzy0623/article/details/51837457
答:云数据库是部署和虚拟化在云计算环境中的数据库。云数据库是在云计算的大背景下发展起来的一种新兴的共享基础架构的方法,它极大地增强了数据库的存储能力,消除了人员、硬件、软件的重复配置,让软、硬件升级变得更加容易,同时,也虚拟化了许多后端功能。云数据库具有高可扩展性、高可用性、采用多租形式和支持资源有效分发等特点。
数据库是“按照数据结构来组织、存储和管理数据的仓库。是一个长期存储在计算机内的、有组织的、有共享的、统一管理的数据集合。
目前云平台逐渐火热起来,国内如:阿里云、腾讯云、华为云等平台,国外如:AWS、Azure、Google GCP等平台,都有不少用户,并在持续的增加中。
CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers.
开发必须会数据库,因为现在所有的软件都需要存储数据。上网就是浏览数据,数据都是存在数据库里面。
分布式数据库已经流行好多年,产品非常众多,其中分布式数据库中间件使用场景最广。本文主要是总结如何基于分布式数据库中间件做数据库架构设计,以充分发挥它的分布式能力。各个中间件产品功能核心原理相同,细节上有些区别。这里仅以阿里云的DRDS为例分析,在产品架构、功能、成熟度和市场占有率上,它都比同行产品有优势。
一、增加列 数据仓库最常碰到的扩展是给一个已经存在的维度表和事实表添加列。本节说明如何在客户维度表和销售订单事实表上添加列,并在新列上应用SCD2,以及对定时装载脚本所做的修改。假设需要在客户维度中增加送货地址属性,并在销售订单事实表中增加数量度量值。 先看一下增加列时模式发生的变化。 修改后源数据库模式如下图所示。
领取专属 10元无门槛券
手把手带您无忧上云