R具有强大的统计计算功能和便捷的数据可视化系统。目前R主要支持四套图形系统:基础图形(base)、网格图形(grid)、lattice图形和ggplot2。其中ggplot2凭借强大的语法特性和优雅的图形外观,逐渐成为R中数据可视化的主流选择。
数了一下刚好有一周多没有写新文章了,主要是临近毕业琐事比较多,再也没有像之前那样,拥有大把时间可以用来挥霍和消遣,静下心来写代码了。 毕竟要写一篇技术含量很高而又能让大家感兴趣的文章出来,足够的时间保障和没有任何干扰的的心情,一个都不能少。 真的不知道还能坚持写几篇,或者说接下来的时间还能容许我抽出多少来打理这些,希望以前写过的那些对于大家还有价值。 今天给大家介绍一个ggplot2连续颜色映射函数中一组非常好用的预设函数,它可以很容易的帮我们实现特定离散颜色间的均匀连续化。 说的不那么专业一点儿,就是如
本文主要讨论ggplot2是如何通过颜色信号来对多边形进行填充的底层理念,这也是想要进阶R语言数据可视化过程中必须搞明白的关键环节。 ggplot2所有图层对象中,geom_ploygon()几何图层对象最为复杂,也最为特殊: 复杂在哪儿呢? 这种几何对象所定义的多边形(特别是在地理信息数据里面),领土边界是基于行政区划、行政区划再细分为单个多边形(也就是group),单个多边形又是一组经纬度坐标点构成(按照order排序)。 所以说geom_ploygon()所要显式声明的参数至少需要四个: data(地
ggplot2是由Hadley Wickham创建的一个十分强大的可视化R包。按照ggplot2的绘图理念,Plot(图)= data(数据集)+ Aesthetics(美学映射)+ Geometry(几何对象)。本文将从ggplot2的八大基本要素逐步介绍这个强大的R可视化包。
1. ggplot2的安装:install.packages("ggplot2")。
一篇旧文,解决一个困扰已经的小技术问题,权当是学习ggplot2以来的整理回顾与查漏补缺。 ---- 今天这一篇是昨天推送的基础上进行了进一步的深化,主要讲如何在离散颜色填充的地图上进行气泡图图层叠加。 为了使得案例前后一致,仍然使用昨天的数据集。 加载包: library("ggplot2") library("plyr") library("maptools") library("sp") library("ggthemes") 导入中国省界地图: china_map<-readShapePoly("
今天跟大家分享的是数据地图系列的第七篇——使用R语言制作热力数据地图! 也许很多小伙伴儿对于R语言还很陌生,感觉很神秘。 确实,R语言的数据地图需要使用很长的代码来写。但是就像我们学习高数和微积分一样,再复杂再庞大的公式,都会有计算软件帮你代劳,而你只需要知道怎么调整参数、控制路径,并且明白每一句代码的实现功能就可以了,无需记住每一串代码的详细内涵和写法。 而且接下来要写的诸多代码,大部分都并非自己写的,而是从网上拼凑,经过整理与汇总后的。坦白的说,绝大部分自己都写不出来,语法也很费解,只是勉强知道大概可以
在使用ggplot2初步绘制(ggplot2|详解八大基本绘图要素)出需要展示的图形后,还需要对标题,坐标轴(ggplot2|theme主题设置,详解绘图优化-“精雕细琢”)和legend(ggplot2 |legend参数设置,图形精雕细琢)上的对象进行一系列的设置,包括但不限于名称更改,颜色,大小,位置和角度的调整。
文章来源:"Preoperative immune landscape predisposes adverse outcomes in hepatocellular carcinoma patients with liver transplantation" (2021,npj Precision Oncology),数据与代码全部公开在https://github.com/sangho1130/KOR_HCC。
今天是一个案例应用,采用东北三省地图进行离散颜色映射,让大家感受下R语言在地理信息空间可视化方面的强大功能,同时也会对之前强调过的地图配色技巧进行应用。 加载工具包: library(ggplot2) ###绘图函数 library(plyr) ###数据合并工具 library(maptools) ###地图素材导入 library(sp) library(Cairo) #图片高清导出 library(RColorBrewer) ###有一些高质量
在上一章中我们讲过plot()绘图的基本结构,主要通过type参数来设置绘制图形的类型。
ggplot2可以用来创建优雅的图形,由于它的灵活,简洁和一致的接口,可以提供美丽、可直接用来发表的图形,吸引了许多用户,特别是科研领域的用户。ggplot2使用grid包来提供一系列的高水平的函数,并将其延伸为图形语法,即独立指定绘图组件,并将它们组合起来,以构建我们想要的任何图形显示。图形语法包含6个主要成分:data, transformations, element, scales, guide和 coordinate system。图层图形语法源于多层数据构建图形的想法。它定义了下表中的图形组分:data, aesthetic mappings, statistical transformations, geometric objects, position adjustment, scales, coordinate system 和 faceting(数据、几何映射、统计变换、几何对象、位置调整、比例、坐标和面)。数据、几何映射、统计变换、几何对象、位置调整形成一个图层,一个图可以有多个图层。
guide函数作为scale_类函数中的一个内函数,通常配合比例尺函数一起使用,但是由于取其内含有众多的参数,因此在比例尺中使用则会显得代码比较臃肿,因此小编比较推荐单独使用guides函数来进行图例自定义。
之前的ggplot2入门实践篇已经更新告一段落,也已经做了归总分类分享给大家。 最近翻看突然发现少了一个知识点,就是分面中没有讲填充多边形分面的应用,虽然其理念跟其他的常用图表类型一致。 但是鉴于多边形填充本身就比较复杂,再加上分面肯定能把大部分小伙伴儿绕晕,这里还是亲自实践一篇案例详细讲解一下实际用法。 如果你还不懂如何使用ggplot2制作数据地图的话,你可以参考以下序列文件: 地图部分(ggplot2) 你想要的地图素材资源,我都帮你整理好了~ 一篇文章教你搞定JSON素材,从此告别SHP时代~ 大道
查看每列的非重复值及每个值的重复次数(直接用base的table(mpg$manufacturer)感觉效果类似)
6月份一直在忙期末考试,今天来迅速的学习下ggplot2包的简单绘图。 R的基础包里面也有很多画图函数,例如plot();barplot();qqplot(); 但是还有大名鼎鼎的ggplot2包,用这个包的函数画出的图比较漂亮,而且使用灵活。
之前有过一段时间,特别热衷于数据地图,也分享很多篇关于地图制作的教程(涉及到各种作图软件),但大多是整理拼凑,自己发挥的不多。 最近在看哈德利.威科姆的那本火遍全球的R语言数据可视化经典教程——《ggplot2——数据分析与图形艺术》。书内虽然关于数据地图的内容很少,但是ggplot所渗透的可视化图层理念实在让人叹为观止。 书中完全将复杂的地图图表语言拆解成常规图表思维,通过图层叠加、分组填色、空间映射,让我对地图这种深度可视化形式有了更多深入的理解。 今天这一篇主要分享美国地图的绘图代码,同样是我们之前分
上节学习了ggplot2的基础作图,并掌握了基本的作图模板。但是每次作图只有两个变量映射到了图形中,如下图:
ggplot2包中的主要功能是ggplot(),它可用于使用数据和x / y变量初始化绘图系统。 例如,以下R代码将数据集初始化为ggplot,然后将一个图层(geom_point())添加到ggplot上,以创建x = Sepal.Length的散点图y = Sepal.Width:
R语言ggplot2作图的时候配色如果不知道如何选择,可以参考如下链接https://r-charts.com/color-palettes/
今天跟大家分享ggplot图表的配色原理与基本技巧。 图表配色是一个很深奥的话题,多亏了R语言平台的众多开发者贡献的配色包,让图表的配色不再深不可测。 这里我暂且将所有的配色场景划分为两类: 离散变量配色与连续变量配色 ggplot函数的配色机制相对来说比较智能,当你给colour或者fill属性指定给变量映射的时候,该函数就会自动的区分变量属性(是离散变量或者是连续变量),进而给出适用于两种情况的配色风格。 ggplot(diamonds,aes(carat,price,colour=cut))+geom
在本课中需要制作与每个样本中的平均表达量相关的多个图,还需要使用所有可用的metadata来适当地注释图表。
ggplot2的特殊语法规则:列名不带引号,行末写加号(加号表示不同函数之间的连接)
本文将简要盘点R中常用的可视化包,并通过简要介绍包的特点来帮助读者深入理解可视化包。
可以使用函数geom_line()、geom_step()或geom_path()。
ggthemr为ggplot2提供了近20种主题,可以直接使用,也可以根据需要设置配色,或改变图表细节。
在前面scRNA分析|使用AddModuleScore 和 AUcell进行基因集打分,可视化中,基因集评分使用小提琴图或者箱线图进行展示,那如何进行统计检验以及添加P值呢?本文主要解决以下几个问题
R 作为入门级编程语言,被经常运用在数据整理、数据可视化、以及机器学习中。 本篇文章将主要介绍在R中如何可视化数据 (基础+进阶)。 R绘图的原理 使用R绘图,我们需要在脑海中明确几个必要元素。首先,需要有一张空白的画布, 如下图所示。其次,我们需要根据数据确定X轴、Y轴,以及X轴Y轴的取值范围,因为一个平面直角坐标系在R绘图过程中是必不可少的。接下来,我们就可以选择适当的图表类型(折线图、柱状图、点状图等),并根据数据坐标在坐标系中描绘数据。最后,我们还可以在画布上添加额外信息,例如图表名称,图例等,当然
本章将教您如何使用ggplot2可视化您的数据。 R有几个用于制作图形的系统,但ggplot2是最优雅和最通用的系统之一。 ggplot2实现了图形语法,它是一个用于描述和构建图形的系统。如果您想在开始之前了解更多关于ggplot2理论基础的内容,我建议您阅读“The Layered Grammar of Graphics”,
今天跟大家分享如何以百分比形式填充离散分段数据地图。 案例用环渤海三省二市的地理数据。 library(ggplot2) library(maptools) library(plyr) 数据导入、转换、抽取 CHN_adm2 <- readShapePoly("c:/rstudy/CHN_adm/CHN_adm2.shp") CHN_adm2_1 <- fortify(CHN_adm2) data1 <- CHN_adm2@data data2 <- data.frame(id=
等高线图(contour map) 是可视化二维空间标量场的基本方法[1],可以将三维数据使用二维的方法可视化,同时用颜色视觉特征表示第三维数据,如地图上的等高线、天气预报中的等压线和等温线等。假设
今天下午7点到9点直播讲解如下代码,腾讯会议,感兴趣的参加,给推文打赏10元获取腾讯会议直播链接
今天给大家介绍一个快速绘制火山图(volcano map) 拓展工具包-ggVolcano,绘图结果为ggplot2对象,也就可以灵活进行相关主题的设置。详细介绍如下:
上一篇中我们介绍了ggplot2的基本语法规则,为了生成各种复杂的叠加图层,需要了解ggplot2中一些基本的几何图形的构造规则,本文便就常见的基础几何图形进行说明;
R有几种不同的系统用来产生图形,但ggplot2是最优雅而多变的那一种。ggplot2实现了图形语法,一种描述和构建图形的逻辑系统。通过ggplo2,我们能够快速学习,多处应用。
写在最后:有时间我们会努力更新的。大家互动交流可以前去论坛,地址在下面,复制去浏览器即可访问,弥补下公众号没有留言功能的缺憾。
大家好,在这里给大家介绍一下使用ggplot2绘图调色的几种小方法。正所谓绘图十分钟,调色一小时。图片的配色直接决定了图片质量的好坏。下面讲一下我平时绘图用到的调色工具。
geom_point():用于绘制散点图 参数 color:点的颜色 size:点的大小 shape :点的形状
继续“一图胜千言”系列,箱线图通过绘制观测数据的五数总括,即最小值、下四分位数、中位数、上四分位数以及最大值,描述了变量值的分布情况。箱线图能够显示出离群点(outlier),通过箱线图能够很容易识别出数据中的异常值。
上次 R 可视乎主要讲述了《Geospatial Health Data》[1]一书中关于空间地理数据可视化用 R 包制作地图的基础内容,参见 R可视乎|空间地理数据可视化(1)。本篇将继续介绍空间地理数据可视化的 R 包和函数。
随着科技的发展,我们生活中生产的数据日益增加,数据可视化变得至关重要!通过大数据的可视化,使我们更能读懂其中的奥秘!
相关矩阵显示相对大量连续变量之间的相关系数。 然而,虽然R提供了一种通过cor函数创建这种矩阵的简单方法,但它没有为该函数创建的矩阵提供绘图方法。ggcorr函数提供了这样的绘图方法,使用ggplot2包中实现的“图形语法”来渲染绘图。 在实践中,其结果在图形上接近于corrplot函数的结果,这是优秀的arm包的一部分。
在BBC数据团队开发了一个R包,以ggplot2内部风格创建可发布出版物的图形,并且使新手更容易到R创建图形。 例如:
条形图专用于离散变量和数值变量之间的可视化展现,其通过柱子的高低,直观地比较离散变量各水平之间的差异,它被广泛地应用于工业界和学术界。在R语言的ggplot2包中,读者可以借助于geom_bar函数轻松地绘制条形图。对于条形图大家对其的印象是什么呢?又见过哪些种类的条形图呢?在本篇文章我将带着各位网友说道说道有关条形图的哪些品种。
参考链接是 ggplot2 area plot : Quick start guide - R software and data visualization - Easy Guides - Wiki - STHDA
这一篇是leaflet动态地图的第四篇,也是最值得推荐的一篇,这一篇涉及到热力地图填充,通过该篇内容,大家可以体会大leaflet在线地图的R借口在处理热力地图上面颜色标度映射的强大优势。 加载包: library(plyr) library(maps) library(mapdata) library(leaflet) library(stringi) library(maptools) library(htmltools) library(RColorBrewer) library(ggplot2) l
今天这篇是昨天美国地图的续篇,同样的方法技巧,不同的对象。 整个过程以及代码并没有太大差别,只要拿到世界地图素材,根据之前的代码,自己修改参数和指标名称以及引用路径,完全可以做出来(尽管并不一定理解每句代码的含义)。 R语言环境: R x64 3.31/Rstudio 0.99.903/ggplot2 2.1.0 代码过程: 加载功能所需支持的工具包: library(ggplot2) library(plyr) library("maptools") 导入并整理世界地图地理信息数据: world_map
使用guides()参数来设置或移除特定的美学映射(fill, color, size, shape等).
领取专属 10元无门槛券
手把手带您无忧上云