-') plt.xlabel('Smarts') plt.ylabel('Probability') plt.title(r'Histogram of IQ: $\mu=100$, $\sigma=15...首先构造数据,这里注意构造的是一维数组可以使用pandas中的Series,如果是二维数组使用DataFrame。...for j in range(len(data[0])): data[i][j] = random.randint(1,20)#赋值的范围是1-20中的任意一个 #首先构造数据...,这里注意构造的是一维数组可以使用pandas中的Series,如果是二维数组使用DataFrame。...='C:\Windows\Fonts\simsun.ttc') 字体选择中的字体路径查看: 打开控制面板——》找到“字体”——》选择自己想要设置的字体,右击属性查看字体路径 通过fontproperties
本期主要涉及的知识点如下: geom_histogram()绘制直方统计图 geom_bar()绘制柱形图 grid包添加图片美化 geom_histogram()绘制直方统计图 直方统计图用于统计数据的分布范围...这里我们不再比较ggplot2的默认主题的好坏了,直接给出美化后的代码(当然借助了我非常喜欢的hrbrthemes主题包): flipper_hist 中设置的属性,这可是设置精美可视化作品的关键。...grid包添加图片美化 添加与绘制图表主题、颜色等元素相关的图片,可以使你的可视化作品增色不少,在ggplot2中添加图片则十分简单。这里我们选择了与主题相符的图片,用于提升绘图结果的美观性。...总结 以上就是R-ggplot2关于基础柱形图的绘制推文教程,太具体的原理性这里也没做过多介绍,感兴趣的可以自行查阅相关资料。接下来还有Python版本的哦! 练习数据获取
使用plotnine定制一个画布 从dataframe数据中构建复杂的定制化图表 导出作图结果 之前分享过很多pandas可视化、plotnine可视化, 使用pandas做数据可视化 plotnine...: Python版的ggplot2作图库 但是两者对比的还没有,今天我们尝试分别用pandas和plotnine作直方图、散点图。...直方图 pandas直方图 ecoli['genome_size'].plot.hist() ?...#带标题 ecoli['genome_size'].plot.hist(title='Histogram with pandas') ?...mapping=aes(x='genome_size')) #需要统计的x轴 + geom_histogram(bins=15) #直方图分为15个区间 ) ?
参考前文:R绘图笔记 | R语言绘图系统与常见绘图函数及参数 ---- 前面介绍了散点图、柱状图、直方图和核密度估计图,有时候散点图不能很直观的看的出数据的分布情况,这里介绍散点图与统计直方图组合绘制...部分参数解释: data是用于绘图的数据,x和y分别指定数据中的x轴和y轴,group指定一个分组变量,shape指定点的形状【参考:散点图】。...hist_right <- ggplot()+ geom_histogram(aes(data1$y),colour='black',fill='#00AFBB',binwidth = 0.3)+...,但为了好玩加上了R的logo,这是一种在ggplot中增加jpeg位图的方法 # logo <- read.jpeg("d:\\Rlogo.jpg") # empty R的logo,这是一种在ggplot中增加jpeg位图的方法 # logo <- read.jpeg("d:\\Rlogo.jpg") # empty <- ggplot(data.frame
号染色体的图 我们把1号染色体大概14M到19M的区间提取出来,自己作图 library(data.table) library(tidyverse) dat的逻辑我暂时还没想明白),这个函数来源于R包BioSeqUtils,我安装这个R包的时候遇到报错,DescTools...这个R包一直没有安装成功。...不按照这个R包,把这个函数单独复制出来也可以用 https://github.com/junjunlab/BioSeqUtils/blob/master/R/createGraphFuncs.R getRotatedPolygon...ggplot(data = new.df.polygon_coods, aes(value, fill = new_value)) + geom_histogram(bins =
在生产环境中,如果系统已经稳定,调优的空间就会越来越小,但是不代表没有调优的余地,可能工作的重心就会更加求稳,sql调优就是一项不间断的工作,很多工作还是需要前瞻的,如果等到问题严重的时候再紧急处理,提前的分析这些潜在问题就会让你不会总是心跳加快...dba_hist_sqlstat是一个宝库,很多的sql执行统计信息都会在其中,可以基于这个数据字典分析很多的特性,比如查看某条sql语句的性能历史,分析执行计划是否稳定等等,这些功能在分析sql语句的时候是相当实用的...,毕竟一个awr报告中的sql问题可能只是一个表象,如果结合历史来看就会分析出更多的因素来。...avg_etime, (buffer_gets_delta/decode(nvl(buffer_gets_delta,0),0,1,executions_delta)) avg_lio from DBA_HIST_SQLSTAT...S, DBA_HIST_SNAPSHOT SS where sql_id = nvl('&sql_id','4dqs2k5tynk61') and ss.snap_id = S.snap_id and
R中的因子用于存储不同类别的数据,可以用来对数据进行分组,例如人的性别有男和女两个类别,根据年龄可以将人分为未成年人和成年人,考试成绩可以分为优,良,中,差。...R 语言创建因子使用 factor() 函数,向量作为输入参数。...levels:指定各水平值, 不指定时由x的不同值来求得。 labels:水平的标签, 不指定时用各水平值的对应字符串。 exclude:排除的字符。 ordered:逻辑值,用于指定水平是否有序。...这个顺序也是有讲究的,一般是按字母顺序来排列。我们也可以按照自己的需要来排列因子的顺序。...关于这个参数后面我们还会给大家举个更实际的,跟临床数据相关的例子。 R中的因子使用还是更广泛的,例如做差异表达分析的时候我们可以根据因子将数据分成两组。
y ~ x y ~ 1 + x 很多读者在使用 R 的模型构建时可能会对其中的截距项感到困惑。上述两个模型都描述了简单的线性回归,是等同(完全一致)的。...当我们了解这一点后,我们在实际的操作过程中尽量指明截距项,这样能够更加方便自己和他人理解。 y ~ 0 + x y ~ -1 + x y ~ x - 1 上述3个模型都去除了截距项。...如果是 y ~ 1 那么得到的模型结果恰好是均值。为什么是均值呢?大家不妨想一想。...相关资料: https://cran.r-project.org/doc/manuals/R-intro.html#Statistical-models-in-R https://stackoverflow.com.../questions/13366755/what-does-the-r-formula-y1-mean
因此回归分析章节中提到的lm()函数也能分析ANOVA模型。不过,在这个章节中,我们基本使用aov()函数。最后,会提供了个lm()函数的例子。...R默认类型I(序贯型)方法计算ANOVA效应(类型II和III分别为分层和边界型,详见R实战(第2版)202页)。...R中的ANOVA表的结果将评价: A对y的影响 控制A时,B对y的影响 控制A和B的主效应时,A与B的交互影响。 一般来说,越基础性的效应需要放在表达式前面。...单因素方差分析 单因素方法分析中,你感兴趣的是比较分类因子定义的两个或多个组别中的因变量均值。...glht.png par语句增大了顶部边界面积,cld()函数中的level选项设置了使用的显著水平。 有相同的字母的组说明均值差异不显著。
数据可视化不可避免的就是要选择一些颜色方案,颜色方案除了手动设置之外,在R中也有自动生成颜色方案的工具。...R中的HCL配色方案 HCL本意是和RGB HSV等一样的颜色空间的术语,由于这里所用的颜色方案在R中是hcl.pals函数,所以就称为HCL配色方案了。...HCL相比较HSV等颜色空间的一个重要优点就是颜色的视觉明度是均一的,在R中也是推荐使用hcl颜色方案,不推荐使用rainbow等颜色方案了。...,常用于着色离散变量; sequential的颜色方案中色调较少,体现了颜色的连续过渡,可以用于着色连续变量; diverging和divergingx也是颜色的连续过渡,但是不同于sequential...,它的颜色在深浅上存在一个中心点,中心点两侧颜色逐步加深过渡,这样的颜色方案适合有中心点的连续变量,比如相关性数据:数据范围是-1到1,0是中心点,于是两端的颜色需要两个深色,而中心点可以使用最浅的颜色
考虑到公众号后台数不胜数的提问其实并不是生物学知识或者数据处理知识的困惑,仅仅是绘图小技巧以及数据转换的困难。...("text", x = 16.5, y = 52, label = "r^2==0.42",parse=T)#这里是数学公式 *ggplot中的文本不能直接以表达式对象作为输入,其参数通常是字符串...) #如果想快速查看未包含在数据框中的数据,可以将数据框参数设为NULL w <- faithful$waiting ggplot(NULL, aes(x = w)) + geom_histogram...A:运行geom_histogram()函数并使用分面绘图 #使用MASS包中的birthwt数据集(低婴儿体重的风险因子) birthwt low age lwt race smoke ptl...#小提琴图的坐标范围时数据的最小值到最大值,扁平的尾部在这两个位置处截断。
问题影响的版本22.2.10.100问题发生原因hist_head$中表对应列的analyze time小于tab$中表的analyze time,在执行到estColEqualOrNotParam方法时...问题分析和处理过程现网错误的执行计划及估算出来的rows及cost(sql语句中有hint,可以忽略,实际不加hint也走的是这个执行计划):过滤条件中sub_account_id的选择性很好,表的总数据量为...实际正确的执行计划及cost如下(where语句中多了几个predicate,不影响总量本质):实际优化器在加载列的统计信息用于估算时,如果hist_head$中analyze time小于tab$中analyze...time,或者hist_head$中没有表中相关列的数据,那么就会用默认的selectivity(0.04)来做过滤条件估算,最终导致执行计划走偏。...经验总结hist_head$中存放了列的普通统计信息,histgrm$中存放了列的直方图信息
❝本节来介绍在 R中如何使用ggplot2结合for循环绘图并保存,下面通过一个案例来看具体操作 ❞ 加载R包 library(tidyverse) library(data.table) library...library(patchwork) 设置文件路径 file_name <- "loop_data.tsv" 读入数据 dat <- fread(file_name, sep="\t") 获取唯一的城市名称进行循环...cities = unique(dat$city) 创建一个空列表来保存创建的图 city_plots = list() 循环遍历并绘图保存 for(city_ in cities) { city_plots...".pdf"), width =3.04, height =3.10, units = "in", dpi=300) } 上面我们将每一张图都单独输出了,下面来介绍如何将其全部组合起来,分别介绍两种R包的方法
函数的用途 base包中的sweep函数是处理统计量的工具,一般可以结合apply()函数来使用。...当我们我们需要将apply()统计出来的统计量代回原数据集去做相应操作的时候就可以用到sweep()。...函数的参数 sweep(x, MARGIN, STATS, FUN = "-", check.margin = TRUE, ...) x:即要处理的原数据集 MARGIN:对行或列,或者数列的其他维度进行操作...,与apply的用法一样 STATS:需要对原数据集操作用到的统计量 FUN:操作需要用到的四则运算,默认为减法"-",当然也可以修改成"+","*","/",即加、乘、除 check.margin:是否需要检查维度是否适宜的问题...…… 下面我们结合几个具体的例子来看 #创建一个4行3列的矩阵 M = matrix( 1:12, ncol=3) 1.每一行都减去这一行的均值 #方法一,通过rowMeans函数来计算每一行的均值
1.str() 在很多语言里可以将其他类型转化为字符串,不过在R中会返回数据类型。...","virginica": 1 1 1 1 1 1 1 1 1 1 ... 2.通过链接读取数据 site 的网站...(5),y=runif(5)) names(df) <- 1:2 取第一列,如果是这样则会报错: df$1 报一个“错误: unexpected numeric constant in "df$1"”的错误...但是这样可以: df$`1` df$后tab键提示出来也是会有反引号的。...: irisSL <- iris$Sepal.Length # 分成五个bins cut(irisSL, 5) # 也可以按我们想要的范围分割 cut(irisSL, breaks = seq(1,8,1
上一讲中,我们对蛋白的编码基因的测序深度和覆盖度进行了统计,其中有的覆盖度很高,有的覆盖度却又很低,针对这个统计出的测序深度及覆盖度,我们就可以做一些简单的统计及分析。...首先,可以看看覆盖度为10%~100%区间的基因都有多少,并可视化,R代码如下: hist(dat$coverage,breaks =(0:10)/10) library(ggplot2) ggplot...值得注意的是,居然有295个基因是完全没有被覆盖到,这个现象值得深究。 ? 我们也顺便看看GC含量跟测序深度的关系。...我看了一下,6号染色体就占了一多半了,很有可能是6号染色体的注释不够完全,而不是我的基因组的问题。因为性染色体就排在后面,它们上面的基因没办法覆盖到这很正常了。...Y染色体上面没有被覆盖到的基因,我貌似都不认识呀。 而1号染色体上面覆盖度为0的都是histone cluster基因,为什么它们无法被测序呢?
(变量:性别,weight2,X_ageg5yr) 由于性别是生物识别技术中的关键变量,因此探讨性别是否可能与其他变量相关很重要。在这种情况下,我们正在研究性别是否与体重相关。...') + ggtitle("Histogram [Log_Weight]") + centeredgrid.arrange(hist_weight, hist_log_weight, ncol = 2)...由于数据的对数规范版本几乎是正常的单峰数据,因此可以将权重用于推断统计中的后续分析。 女性参加者比男性参加者更多,其幅度大大超过美国的总人口。这可能表明抽样方法在性别抽样方面并非完全随机。...(变量:性别,X_ageg5yr,weight2,diabete3) 当观察样本中的女性和男性参与者时,报告的糖尿病比率非常相似。...第4部分:结论 从数据的初步探索中可以明显看出,某些功能具有比其他功能更强的相关性。体重与性别有关。性别似乎与体重无关。但是,糖尿病似乎与年龄有关,而与体重密切相关。
创建了区域建议后,R-CNN网络将该区域块变形标准的方形,并将其输入到改进版的AlexNet网络,具体步骤如图7所示。...作者在文章中写道: 我们观察到,Fast R- CNN网络里区域检测器所使用的卷积特征图谱,也可用于生成区域建议,从而把区域建议的运算量几乎降为0。...该边界框中的图像作为对象的可能性用输出分值表示。 然后,我们只将每个可能是目标对象的边界框传递到Fast R-CNN中,以实现对象分类和缩紧边界框。...到目前为止,我们已经了解到如何能够以许多有趣的方式使用CNN特征,来有效地用边界框定位图像中的不同对象。 我们可以进一步扩展这些技术,定位到每个对象的精确像素,而不是仅限于边框吗?...让我感到特别兴奋的是,从R-CNN网络进化到Mask R-CNN网络,一共只用了三年时间。随着更多的资金、更多的关注和更多的支持,计算机视觉在三年后会有怎样的进展呢?让我们拭目以待。
之前我学习和自己分析时就遇到过,尝试使用判断的方式事先检查它是不是数据存在问题(这类数据明显不服从正态分布),可以使用正态性检验,或者直接判断是不是样本组内的数据是完全一样的,如果一样就不要这个了。...所遇到的问题: 分析两个样本之间是否存在差异,每个样本三个重复。现在用的是t.test,但有些样本三个重复的值一样(比如有0,0,0或者2,2,2之类的),想问下像这种数据应该用什么检验方法呢?...以下是我的回答: 数据是恒量是无法做t检验的,因为计算公式分母为0(不懂的看下统计量t的计算公式,一般标准差/标准误为分母,所以恒量是不能算的)。...,如果一样,则输出原始的结果,再筛选其中差异大的基因 。...9508518/why-are-these-numbers-not-equal https://stackoverflow.com/questions/23093095/t-test-failed-in-r
方案 在一个新的 R 会话中使用 search() 可以查看默认加载的包。...#> [19] "package:datasets" "package:methods" #> [21] "Autoloads" "package:base" 以下提供的函数能够列出包中的函数和对象...showPackageContents <- function(packageName) { # 获取特定包所有内容的列表 funlist 的东西 idx <- grep("<-", funlist) if (length(idx) !...qr.resid qr.solve qr.X quarters quarters.Date quarters.POSIXt quit R_system_version R.home R.Version
领取专属 10元无门槛券
手把手带您无忧上云