首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R中的引导变量相关性

在R中,引导变量相关性是指在多元线性回归模型中,两个或多个自变量之间的相关性。这种相关性可能会导致模型的不稳定性和不可靠性,因此需要进行控制。

以下是一些常用的引导变量相关性控制方法:

  1. 回归系数:通过计算自变量的回归系数,可以了解它们之间的关系。如果两个自变量的回归系数具有相同的符号,则它们之间存在正相关关系;如果它们具有相反的符号,则它们之间存在负相关关系。
  2. 方差膨胀因子(VIF):VIF是一种衡量多重共线性的指标,它表示自变量之间相关性的程度。如果VIF值大于10,则存在较强的多重共线性,需要进行控制。
  3. 相关系数矩阵:通过计算自变量之间的相关系数矩阵,可以了解它们之间的相关性。如果相关系数接近1或-1,则表示两个自变量之间存在强相关关系,需要进行控制。
  4. 主成分分析(PCA):PCA是一种常用的降维技术,可以将高维数据映射到低维空间中,同时保留数据的主要成分。通过PCA,可以消除数据中的多重共线性,从而减少模型的不稳定性和不可靠性。
  5. 岭回归(Ridge Regression):岭回归是一种常用的正则化方法,可以通过在模型中添加正则项来控制引导变量相关性。岭回归可以有效地减少模型的不稳定性和不可靠性。

推荐的腾讯云相关产品:

  • 腾讯云数据分析:提供数据处理、存储、分析等一系列服务,帮助用户快速构建数据仓库和数据分析应用。
  • 腾讯云数据科学:提供机器学习、深度学习、自然语言处理等一系列服务,帮助用户构建智能化的数据应用。
  • 腾讯云大数据:提供大数据处理、存储、分析等一系列服务,帮助用户快速构建大数据应用。

产品介绍链接地址:

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Molecular Psychiatry:三种主要精神疾病中的神经变异性

在主要的精神疾病(MPDs)中,人们怀疑存在大脑生理学的共同破坏。在这里,我们研究了休息时的神经变异性,这是一种成熟的脑功能行为相关标记,并探索了其在MPDs的基因表达和神经递质谱中的基础。我们招募了219名健康对照组和279名患有精神分裂症、重度抑郁症或双相情感障碍(躁狂症或抑郁状态)的患者。利用从静息态功能磁共振成像中获得的血氧合水平依赖性信号的标准差(SDBOLD)来表征神经变异性。通过偏最小二乘相关法来检验SDBOLD模式的经诊断中断及其与临床症状和认知功能的关系。在临床样本之外,我们估计了观察到的SDBOLD破坏模式与死后基因表达、元分析认知功能和神经递质受体谱之间的空间相关性。发现了两种SDBOLD中断的转诊断模式。模式1在所有诊断组中都表现出来,在精神分裂症中最为明显,其特征是语言/听觉网络的SDBOLD较高,而默认模式/感觉运动网络的SDBOLD较低。相比之下,模式2仅表现在单极和双相抑郁症中,其特征是默认模式/显著性网络中SDBOLD较高,而感觉运动网络中SDBOLD较低。模式1的表达与MPDs的临床症状和认知缺陷的严重程度相关。这两种被破坏的模式与基因表达(如神经元投射/细胞过程)、元分析认知功能(如语言/记忆)和神经递质受体表达谱(如D2/5-羟色胺/阿片类受体)具有不同的空间相关性。总之,综上所述,神经变异是MPDs潜在的经诊断生物标志物,其大量空间分布可以通过基因表达和神经递质受体谱来解释。MPDs的病理生理学可以通过测量休息时的神经变异来追踪,异常变异的不同空间模式产生不同的临床认知特征。

03
  • 追踪任务期间fMRI功能连接的空间动态

    功能磁共振成像(fMRI)测量的功能连通性(FC)为探索大脑组织提供了一个强有力的工具。脑组织的时间动力学研究表明,功能连接体具有很大的时间变异性,这可能与心理状态的转变和/或适应过程有关。大多数动态研究,如功能连接体和功能网络连接(FNC),都关注于宏观的FC变化,即不同脑网络来源、节点和/或感兴趣区域的时间相干性变化,其中假设在网络或节点内FC是静态的。在本文中,我们发展了一种新的方法来检查FC的空间动力学,而不假设其网络内的平稳性。我们将我们的方法应用于22名受试者的听觉oddball任务(AOD)中的fMRI数据,试图通过评估空间连通性是否随任务条件而变化来捕获/验证该方法。结果表明,除了参与传统的时间动态,如跨网络变异性或动态功能网络连通性(dFNC),连接网络还表现出随时间的空间变异性。此外,我们还通过聚类分析评估个体对AOD任务中目标(oddball)检测的功能对应关系,研究了FC的空间动态与认知过程的关系。提取认知任务对应状态,并分离对应状态的动态FC空间图。在不同的任务引导的状态下,任务刺激同步状态随着默认模式网络(defaultmode network, DMN)与认知注意网络强的负相关关系显著降低。我们还观察到越来越多的任务异步状态,这种状态表现出没有DMN的反相关。研究结果强调了认知任务对观察到的空间动态结构的影响。我们还发现,我们方法得到的FC空间动态模式与宏观dFNC模式基本一致,但在空间上有更多的细节和规范,同时源内部的连通性提供了新的信息,并随时间而变化。总的来说,我们证明了(通常被忽视的)连接的空间动力学存在的证据,它与任务的联系和认知/心理状态的暗示。

    03

    Nature:可重复的全脑关联研究需要数千人参与

    磁共振成像(MRI)已经改变了我们对人类大脑的理解,通过对特定结构的能力(例如,损伤研究)和功能(例如,任务功能MRI (fMRI))的复制映射。心理健康研究和护理还没有从核磁共振成像中实现类似的进步。一个主要的挑战是复制大脑结构或功能的个体间差异与复杂的认知或心理健康表型之间的关联(全脑关联研究(BWAS))。这样的BWAS通常依赖于适合经典脑成像的样本量(中位神经成像研究样本量约为25),但对于捕捉可复制的脑行为表型关联可能太小了。在这里,我们使用了目前最大的三个神经成像数据集,总样本量约为50,000人,以量化BWAS效应大小和可重复性作为样本量的函数。BWAS的关联比之前认为的要小,导致了统计上的研究不足,效应大小和典型样本量的复制失败。随着样本量增加到数千个,复制率开始提高,效应大小信息减少。功能性MRI(对比结构)、认知测试(对比心理健康问卷)和多变量方法(对比单变量)检测到更强的BWAS效应。小于预期的脑表型关联和人群亚样本的变异性可以解释广泛的BWAS复制失败。与影响更大的非BWAS方法(例如,损伤、干预和个人)相比,BWAS的可重复性需要数千个人的样本。

    01

    NeuroImage:警觉性水平对脑电微状态序列调制的证据

    大脑的瞬时整体功能状态反映在其电场构型中,聚类分析方法显示了四种构型,称为脑电微状态类A到D。微状态参数的变化与许多神经精神障碍、任务表现和精神状态相关,这确立了它们与认知的相关性。然而,使用闭眼休息状态数据来评估微状态参数的时间动态的常见做法可能会导致与警觉性相关的系统性混淆。研究人员研究了两个独立数据集中的微状态参数的动态变化,结果表明,微状态参数与通过脑电功率分析和fMRI全局信号评估的警觉性水平有很强的相关性。微状态C的持续时间和贡献,以及向微状态C过渡的概率与警觉性正相关,而微状态A和微状态B则相反。此外,在寻找微状态与警觉性水平之间对应关系的来源时,研究发现警觉性水平对微状态序列参数的格兰杰因果效应。总而言之,本研究的发现表明,微状态的持续时间和发生具有不同的起源,可能反映了不同的生理过程。最后,本研究结果表明,在静息态EEG研究中需要考虑警觉性水平。

    00

    Neuron:大脑功能连接的信息交流决定了电刺激在大脑皮层的传播

    灰质区域之间的交流支撑着大脑功能的各个方面。我们通过对20个医疗中心共550人进行29,055次单脉冲直接电刺激(平均每个受试者87±37次电极接触)后获得的颅内脑电图记录,研究了人脑的区域间通信。我们发现网络通信模型——基于扩散核磁共振推断的结构连通性计算——可以解释焦点刺激的因果传播,以毫秒时间尺度测量。在这一发现的基础上,我们表明,一个包含结构、功能和空间因素的简洁统计模型可以准确而稳健地预测脑刺激的全皮层效应(来自医疗中心的数据R2 = 46%)。我们的工作有助于网络神经科学概念的生物学验证,并提供了连接组拓扑如何塑造多突触区域间信号的见解。我们期望我们的发现对神经通讯的研究和脑刺激范式的设计有一定的启示。

    01

    Neuron:大脑功能连接的信息交流决定了电刺激在大脑皮层的传播

    灰质区域之间的交流支撑着大脑功能的各个方面。我们通过对20个医疗中心共550人进行29,055次单脉冲直接电刺激(平均每个受试者87±37次电极接触)后获得的颅内脑电图记录,研究了人脑的区域间通信。我们发现网络通信模型——基于扩散核磁共振推断的结构连通性计算——可以解释焦点刺激的因果传播,以毫秒时间尺度测量。在这一发现的基础上,我们表明,一个包含结构、功能和空间因素的简洁统计模型可以准确而稳健地预测脑刺激的全皮层效应(来自医疗中心的数据R2 = 46%)。我们的工作有助于网络神经科学概念的生物学验证,并提供了连接组拓扑如何塑造多突触区域间信号的见解。我们期望我们的发现对神经通讯的研究和脑刺激范式的设计有一定的启示。

    01

    Nature Neuroscience:从大脑MRI中对皮层相似性网络进行稳健估计

    结构相似性是磁共振成像(MRI)皮层连接组学日益关注的焦点。在这里,我们提出了形态测量逆散度(MIND),一种新的方法,基于它们的差异来估计皮层区域之间的相似性。与之前跨越3个人类数据集和1个猕猴数据集的11000次扫描的形态相似网络(MSNs)方法相比,MIND网络更可靠,更符合皮层细胞结构和对称性,与轴突连接束追踪测量更相关。来自人类T1加权MRI的MIND网络比MSNs或来自束状融合加权MRI的网络对年龄相关的变化更敏感。皮层区域之间的基因共表达与MIND网络的共表达比与MSNs网络或束造影的耦合更强。MIND网络表型也更具遗传性,特别是结构分化区域之间的连边。MIND网络分析为使用现成的MRI数据的皮层连接组学提供了一个经过生物学验证的透镜。

    02
    领券