。
这个错误是由于使用了不正确的数据格式导致的。在使用plot_ly函数时,参数x应该是一个长度为1或4的向量,而不是长度为2的向量。
解决这个错误的方法是检查传递给plot_ly函数的数据,并确保x参数的长度符合要求。以下是一些可能的解决方案:
总结起来,要解决这个错误,你需要检查传递给plot_ly函数的数据,并确保x参数的长度为1或4。如果数据不符合要求,你可以考虑转换数据格式或使用其他适合的绘图函数。
大家看惯R语言朴素的外表后,可能觉得一些高大上的气息好像和R语言没啥关系。今天我们为大家就展示下R语言在图像的交互中帅气一面。话不多说,进入我们的主题:网页可互动图像的绘制。首先我们还是需要安装一个R包:plotly。此包存在于R语言的CRAN上,所以直接安装就好。其依赖的包包括了shiny在内的大量绘图工具。最后我们还要加载另一个包DT。载入包
plotly包:是一个基于浏览器的交互式图表库,建立在开源的JavaScript图表库plotly.js上,plotly包利用函数plot_ly函数绘制交互图。本文简单介绍几种常见图表的绘制方式,点图、线图及箱线图。
Plotly是个交互式可视化的第三方库,可以实现R语言的交互可视化,用法与ggplot差不多,默认的颜色比ggplot好看很多,本文简单介绍一下Plotly的应用。
分别以wt,hp,qsec为xyz轴作图 add_markers(p, x = NULL, y = NULL, z = NULL, …, data = NULL, inherit = TRUE)
之前公众号介绍过的绘图工具:如何快速画出美观的图形?,图表这么多,该用哪种展示我的数据呢?使用的语言都为 python,对于一些 R 语言爱好者就不是那么方便啦,今天小编为大家介绍一个支持 R 语言的开源图形库—— Plotly,赶紧收藏起来,迅速 get 绘制美观实用的图形技能吧~
火山图(Volcano Plot)常用于展示基因表达差异的分布,横坐标常为Fold change(倍数),越偏离中心差异倍数越大;纵坐标为P value(P值),值越大差异越显著。得名原因也许是因为结果图像火山吧
经常有对比R,Python和Julia之间的讨论,似乎R语言在这三者之中是最为逊色的,实则不可一概而论。
强调一下啊,咱们这个教程里第一次出现了3D图,第一次出现了交互式图形(简单粗暴的理解, 用鼠标点击会动的图)
利用R语言也可以制作出漂亮的交互数据可视化,下面和大家分享一些常用的交互可视化的R包。
甘特图(Gantt chart),又常被称为横道图或者条状图,是现代企业项目管理领域运用最为广泛的一种图示。就是通过条形来显示项目的进度、时间安排等相关情况的。
前几期的给大家推荐了关于3D图表的绘制,好多读者私信私信小编推荐一些R语言相关的3D绘图工具? 小编这就安排,比较读者中R语言的使用者还是蛮多的。本期推文内容如下:
上次 R 可视乎主要讲述了《Geospatial Health Data》[1]一书中关于空间地理数据可视化用 R 包制作地图的基础内容,参见 R可视乎|空间地理数据可视化(1)。本篇将继续介绍空间地理数据可视化的 R 包和函数。
利用甘特图(Gantt chart)管理学习计划,通过条形来显示项目的进度、时间安排等相关情况。
在开始教程前,我们先来了解一个由加拿大 IVADO(Institute for Data Valorization)资助的项目:COVID-19 Data Hub(新型冠状病毒肺炎数据中心),它是一个致力于开发一个统一的数据集,有助于更好地理解新型冠状病毒肺炎数据。
plotly包不仅仅是一个包,还是一个多元的交互绘图系统,在Python、MATLAB以及Perl等语言都是可以调用。
下面就以几个经典的系统作为示范。本章不涉及太多知识点,以展示为主。主要介绍三个经典的非线性混沌系统。
本文原作者麦艳涛。本文原载于知乎专栏。 截止到8月15日,《战狼Ⅱ》上映的第19天,票房已超45亿人民币。 真正成为唯一一部挺进世界影史票房前100名的亚洲电影。 抛开爆炸的票房不说,电影还激起了观众各种情绪,甚至有人放狠话说:敢喷《战狼Ⅱ》的,要么是智障,要么是公敌,就是这么简单粗暴。 尽管各路评论出街,媒体闹得沸沸扬扬,观众还是傻傻分不清楚哪边意见比较靠谱。 本文通过Python爬虫的方式获取数据,对豆瓣电影评论进行分析,制作了豆瓣影评的云图。 现在,让我们来看看,《战狼Ⅱ》评论里到底藏着哪些有趣的潜台
Seurat是目前单细胞数据分析最常用的软件之一,本文介绍下如何在Seurat里做三维的tsne计算以及进行可视化展示。
前不久写的那个,关于如何提取json格式数据地图素材中的相关数据,来适应ggplot2场景下的数据框作图,其实那个代码写的一直都没有通用性。 导致我每做一一个需要使用json地图素材的项目,都需要从新修改那个代码,虽然每一次都能简化不少,但是依然无法适用所有的json素材。 知道最近在leaflet社区浏览案例的时候,才发现大神已经提供了很好的json数据解析方案里,起码有两个(保守估计)以上的包可以完胜这个任务,而且是直接调用现成的函数,无需自己编写方案。 瞬间感觉死磕在json上的时间都能再过一个五一小
截止到 8 月 20 日,《战狼Ⅱ》上映的第 25 天,它的票房已超 50 亿人民币,真正成为唯一一部挺进世界影史票房前 100 名的亚洲电影。
主要内容:如何安装,运行和使用IPython进行交互式 matplotlib 绘图,数据分析,还有发布代码。
摘要总结:本文介绍了基于Plotly的Web可视化框架的应用和代码示例,包括折线图、散点图、箱线图、热力图、条形图、瀑布流、地图、交互式图表等。此外,还介绍了如何利用Python的Numpy和Pandas库进行数据处理和分析,以及如何通过Python的Plotly库创建交互式图表。本文还介绍了如何将Plotly嵌入到Web应用程序中,并分享了多个Python代码示例和Jupyter Notebook页面。
但是随着维度增加到三维甚至更高维,光绘制出相空间已经不足以直观的了解系统的形态。我们也很难对着一坨烂七八糟的轨线在论文里水字数。因此有必要引入一个新的可视化方法,对系统进一步降维,提炼出更简洁的信息。
版权声明:本文为博主原创文章,未经授权禁止转载。 https://blog.csdn.net/u010099080/article/details/84197684
柱状图又称条形图,在统计分析中的使用频率最高,也是众多小白入门R最早绘制的可视化图形。
2.如果某一行或某一列的1的个数超过n/2(n为矩阵的大小),则无法通过交换操作使得对角线上的元素全为1,直接输出-1。
本文由 PPV课 - korobas 翻译,未经许可,禁止转载! 原文翻译链接:http://pbpython.com/visualization-tools-1.html 一、介绍 在Python中,有很多数据可视化途径。因为这种多样性,造成很难选择。本文包括一些比较常见的可视化工具的样例,并将指导如何利用它们来创建简单的条形图。我将采用下面的工具来创建绘图数据示例: Pandas Seaborn ggplot Bokeh pygal Plotly 在实例中,我们利用pandas来操作数据,驱动
matlab的图形绘制是非常重要的一种功能,所有关于数据分析挖掘方面一定会用到此项功能。
不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示。本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示。
ICA是用来分离混合源的技术。所以我们准备先混合,再分离,我们定义两个独立的源,上面的称为A,下面的称为B,代码如下:
plot(x,y)这种格式中,若x,y是向量,则它们必须具有相同的长度。函数将以x为横轴,绘制y。
“ 数据可视化过程中,经常遇到两种不同类型图表组合的情况,就是所谓的双坐标轴组合图。最近学习中遇到了此问题,特学习和大家分享,部分内容有个人改进哟”
简介 在Python的世界里,可视化你的数据有多种选择。由于这种多样性,决定何时使用哪一个确实是种挑战。这篇文章包含由更受欢迎的包中的一部分制作的示例,并说明如何使用它们创建一个简单的条形图。我将使用: Pandas Seaborn ggplot Bokeh pygal Plotly 在例子中,我将使用Pandas处理数据并驱动可视化。大多数情况下这些工具可以在没有pandas的环境中运行,但是我认为pandas和可视化工具的结合非常普遍,这是最合适的开始之处。 Matplotlib怎么样? Matpl
数据校验的基本原理 <1> 数据校验的必要性 受元器件的质量、电路故障或噪音干扰等因素的影响,数据在被处理、传输、存储的过程中可能出现错误 若能设计硬件层面的错误检测机制,可以减少基于软件检错的代价(系统观) <2> 校验的基本原理 增加冗余码(校验位) - 有效信息(k位) 校验信息(r位) <3> 码距的概念 同一编码中,任意两个合法编码之间不同二进制位数的最小值 0011 与 0001 的码距为1,一位错误时无法识别 0000、0011、0101、0110、1001、1010、1100、1111等
本文介绍基于Python语言,读取Excel表格数据,并基于给定的行数范围内的指定列数据,绘制多条曲线图,并动态调整图片长度的方法。
之前给大家介绍过如何使用matlab绘制静态图像,但是实际应用过程中往往可能需要动态的展示计算结果,因此推出本期内容来介绍如何使用matlab制作演示动画并存储演示结果。
初级统计函数 max() ,min() , mean() , median() ,var()方差 , sd()标准差 , sum()总和, length(x) # 长度(x中元素的个数), unique(x) #去重复(第一次出现不为重复,第二次出现为重复),duplicated(x)#检查重复值 , table(x) 重复值(因子)统计 ,sort(x) #排序 , dim() 查看行列数, nrow()查看行数,ncol() 查看列数
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
通常而言,在绘制图形的时候都是绘制某一种类型的一张图形,例如绘制一张散点图,绘制直方图。但有的时候我们希望同时展示多幅图形,可能是因为这些图形有某种联系,需要共同展示才能够更好的表达数据中蕴含的信息。之前介绍的边际图形就是这样的一个例子。本章节会介绍,当我们绘制了好了多幅图形之后,如何将多幅图形合并起来。
此 MATLAB 函数 创建 Y 中数据对 X 中对应值的二维线图。 如果 X 和 Y 都是向量,则它们的长度必须相同。plot 函数绘制 Y 对 X 的图。 如果 X 和 Y 均为矩阵,则它们的大小必须相同。plot 函数绘制 Y 的列对 X 的列的图。 如果 X 或 Y 中的一个是向量而另一个是矩阵,则矩阵的各维中必须有一维与向量的长度相等。如果矩阵的行数等于向量长度,则 plot 函数绘制矩阵中的每一列对向量的图。如果矩阵的列数等于向量长度,则该函数绘制矩阵中的每一行对向量的图。如果矩阵为方阵,则该函数绘制每一列对向量的图。 如果 X 或 Y 之一为标量,而另一个为标量或向量,则 plot 函数会绘制离散点。但是,要查看这些点,您必须指定标记符号,例如 plot(X,Y,‘o’)
NO.3 绘制横轴为X,竖轴为Y的多组二维线图,Y值与X值一一对应,所有线条都使用相同的坐标区。
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第29章 STM32F429移植汇编定点FFT库(64点
完整版教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=94547 第29章 STM32F407移植汇编定点FFT库(64点
线型、标记和颜色,指定为包含符号的字符向量或字符串。符号可以按任意顺序显示。您不需要同时指定所有三个特征(线型、标记和颜色)。例如,如果忽略线型,只指定标记,则绘图只显示标记,不显示线条。
逻辑回归(Logistic)虽带有回归二字,但它却是一个经典的二分类算法,它适合处理一些二分类任务,例如疾病检测、垃圾邮件检测、用户点击率以及上文所涉及的正负情感分析等等。
输入后会在Rstudio右上角框框Environment中显示,在控制台中输入x,回车后就会显示1+4的值,即5。
1.l[2] 返回的是列表 l 的第二个元素(注意,是一个长度为 1 的列表),而不是该元素所包含的对象。如果你想取出该元素所包含的对象,需要再加上一个 [[ ]]。
交互式数据可视化对探索性数据分析具有重要影响。在将任何描述性或预测性算法应用于数据集之前,必须首先了解这些特征如何相互关联以及它们如何在内部分布。许多可视化库提供了满足此要求的多种类型的图表。但另一个显而易见的事情是,为每个功能执行相同的绘图工作并滚动每个图表以比较每个功能的结果是一项艰巨的任务。
今晚开始接触 Matplotlib 的 3D 绘图函数 plot_surface,真的非常强大,图片质量可以达到出版级别,而且 3D 图像可以旋转 ,可以从不同角度来看某个 3D 立体图,但是我发现各大中文开源社区有关 3D 绘图的代码都是千篇一律的,现除了看源码说明,我几乎得不到半点有关 plot_surface 的重要参数说明,而且我感觉纯英文的源码说明晦涩难懂,而且没有任何配图,初学者看得是云里雾里,经过一晚上的调试,我才完全弄明白所有参数的含义,以及如何改变这些参数控制图形的显示,现将一点心得分享出来
当我们想同时展示两种数据,如销售量(千/月)和增长率(百分比)的变化情况,由于两组数据的数量级差别非常大,如果在一个y轴上展示则较小数量级的一组几乎无波动变化,此时可以绘制双坐标轴的图形,设置两个y轴,每个y轴都有自己的刻度范围,数据的波动就更加一目了然啦!
领取专属 10元无门槛券
手把手带您无忧上云