首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python:从seaborn kdeplot获取FWHM

Python中的seaborn库是一个基于matplotlib的数据可视化库,提供了一些高级的绘图功能。kdeplot是seaborn库中的一个函数,用于绘制核密度估计图。

FWHM是Full Width at Half Maximum的缩写,指的是峰值的全宽度的一半。在seaborn的kdeplot中,可以通过获取峰值的位置和高度来计算FWHM。

要从seaborn的kdeplot中获取FWHM,可以按照以下步骤进行:

  1. 导入必要的库和模块:
代码语言:txt
复制
import seaborn as sns
import numpy as np
  1. 生成一组数据:
代码语言:txt
复制
data = np.random.randn(1000)
  1. 使用seaborn的kdeplot函数绘制核密度估计图:
代码语言:txt
复制
sns.kdeplot(data)
  1. 获取峰值的位置和高度:
代码语言:txt
复制
density = sns.kdeplot(data).get_lines()[0].get_data()
peak_index = np.argmax(density[1])
peak_position = density[0][peak_index]
peak_height = density[1][peak_index]
  1. 计算FWHM:
代码语言:txt
复制
half_max = peak_height / 2
left_index = np.argmin(np.abs(density[1][:peak_index] - half_max))
right_index = np.argmin(np.abs(density[1][peak_index:] - half_max)) + peak_index
fwhm = density[0][right_index] - density[0][left_index]

通过以上步骤,我们可以从seaborn的kdeplot中获取FWHM。这个值可以用来衡量数据分布的宽度,对于某些应用场景,比如信号处理或光谱分析,FWHM是一个重要的参数。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云官网:https://cloud.tencent.com/
  • 云计算产品:https://cloud.tencent.com/product
  • 人工智能产品:https://cloud.tencent.com/product/ai
  • 物联网产品:https://cloud.tencent.com/product/iotexplorer
  • 移动开发产品:https://cloud.tencent.com/product/mobdev
  • 存储产品:https://cloud.tencent.com/product/cos
  • 区块链产品:https://cloud.tencent.com/product/bc
  • 元宇宙产品:https://cloud.tencent.com/product/mu
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 详解seaborn可视化中的kdeplot、rugplot、distplot与jointplot

    Python大数据分析 一、seaborn简介 seabornPython中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到...seaborn中内置的若干函数对数据的分布进行多种多样的可视化。...本文以jupyter notebook为编辑工具,针对seaborn中的kdeplot、rugplot、distplot和jointplot,对其参数设置和具体用法进行详细介绍。...二、kdeplot seaborn中的kdeplot可用于对单变量和双变量进行核密度估计并可视化,其主要参数如下: data:一维数组,单变量时作为唯一的变量 data2:格式同data2,单变量时不输入...import seaborn as sns sns.set(color_codes=True) import matplotlib.pyplot as plt %matplotlib inline #加载

    4.7K32

    R-Python 基础图表绘制-核密度估计图

    本期知识点主要如下: R-ggplot2.geom_density()绘制方法 Python-seaborn.kdeplot()绘制方法 各自方法的图片元素添加 R-ggplot2.geom_density...()绘制方法 我们还是使用前几期绘制的数据,关注公众号DataCharm,后台回复柱形图 ,即可获取练习数据啦。...Python-seaborn 绘制 还是使用集成功能强大的seaborn绘图包,我们直接给出代码: import pandas as pd import numpy as np import matplotlib.pyplot...,va='center',size=18,fontweight='extra bold') #subtitle ax.text(.01,1.02,"processed bar charts with seaborn.kdeplot...总结 本期将R-ggplot2绘图和Python-seaborn 进行了汇总整理,一方面因为内容较为基础,另一方面,大家也可以对比下R-ggplot2系列 和Python-matplotlib系列绘图。

    59910

    python可视化之seaborn

    数据可视化的文章我很久之前就打算写了,因为最近用Python做项目比较多,于是就花时间读了seaborn的文档,写下了这篇。...这里我用的是Python来进行可视化,因为Python的框架相对较多而且使用的也较广泛。..., seaborn 0.9.0 (如果你的seaborn没有折线图,可能是版本太低了,更新到0.9.0就可以了) 如果需要安装Python,直接到官网下载安装即可,教程有很多。...数据集:seaborn很贴心的准备了一些数据集,自带的,我们只需要使用sns.load_dataset()方法就可以获取了,想要知道seaborn有什么数据集,可以看这里,或者使用sns.get_dataset_names...这个函数的使用方式稍微有点不一样,data和data2分别传入一维的矩阵,在这里我们获取anscombe数据集之后,分别传入它的x列和y列,shade指定是否对等高线进行填充。

    2.4K20

    python数据科学系列:seaborn入门详细教程

    导读 前期,分别对python数据分析三剑客进行了逐一详细入门介绍,今天推出系列第4篇教程:seaborn。...01 初始seaborn seabornpython中的一个可视化库,是对matplotlib进行二次封装而成,既然是基于matplotlib,所以seaborn的很多图表接口和参数设置与其很是接近。...在联网状态下,可通过load_dataset()接口进行获取,首次下载后后续即可通过缓存加载。返回数据集格式为Pandas.DataFrame对象。...kdeplot kdeplot是一个专门绘制核密度估计图的接口,虽然distplot中内置了kdeplot图表,并且可通过仅开启kde开关实现kdeplot的功能,但kdeplot实际上支持更为丰富的功能...各日期的小费箱线图中可以看出,周六这一天小费数值更为离散,且男性的小费数值随机性更强;而其他三天的小费数据相对更为稳定。

    13.5K68

    (数据科学学习手札62)详解seaborn中的kdeplot、rugplot、distplot与jointplot

    一、简介   seabornPython中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到seaborn中内置的若干函数对数据的分布进行多种多样的可视化...,本文以jupyter notebook为编辑工具,针对seaborn中的kdeplot、rugplot、distplot和jointplot,对其参数设置和具体用法进行详细介绍。 ...二、kdeplot   seaborn中的kdeplot可用于对单变量和双变量进行核密度估计并可视化,其主要参数如下:   data:一维数组,单变量时作为唯一的变量   data2:格式同data2,...三、distplot   seaborn中的distplot主要功能是绘制单变量的直方图,且还可以在直方图的基础上施加kdeplot和rugplot的部分内容,是一个功能非常强大且实用的函数,其主要参数如下...实际上,如果你足够了解matplotlib与seaborn,可以通过各种组合得到信息量更丰富特别的图像!   以上就是本文的全部内容,如有笔误望指出!

    3.1K50

    关系(三)利用python绘制相关矩阵图

    关系(三)利用python绘制相关矩阵图 相关矩阵图(Correlogram)简介 1 相关矩阵图既可以分析每对变量之间的相关性,也可以分析单变量的分布情况。...seaborn主要利用pairplot绘制相关矩阵图,可以通过seaborn.pairplot[1]了解更多用法 import seaborn as sns import matplotlib.pyplot...sns.PairGrid(df, diag_sharey=False) # 上三角散点图 g.map_upper(sns.scatterplot) # 下三角密度图 g.map_lower(sns.kdeplot...) # 对角线密度图 g.map_diag(sns.kdeplot) plt.show() 5 总结 以上通过seaborn的pairplot快速绘制相关矩阵图,也可以利用matplotlib自定义绘制相关矩阵图...共勉~ 参考资料 [1] seaborn.pairplot: https://seaborn.pydata.org/generated/seaborn.pairplot.html [2] seaborn.pairplot

    30010

    数据清洗 Chapter03 | Seaborn常用图形

    Seaborn是一个画图工具 Seaborn是基于Matplotlib的一个Python作图模块 配色更加好看,种类更多,但函数和操作比较简单 1、散点图 散点图可直接观察两个变量的分布情况...5、核密度图 核密度图(kernel density estimation ,kde) 是一种非参数检验方法 用于估计未知的密度函数 使用Seaborn中的kdeplot()函数绘制单变量或双变量的核密度估计图...1、绘制单变量核密度估计图 sns.kdeplot(tips["total_bill"]) ?...3、绘制双变量核密度图 sns.kdeplot(tips["total_bill"],tips['tip']) ?...6、小提琴图 小提琴图是盒图与核密度图的结合 能够一次多个维度反映出数据的分布 1、使用violinplot()函数绘制小提琴图 sns.violinplot(x=tips["total_bill

    1.7K21

    ☀️苏州程序大白一文基础手把手教你Python数据可视化大佬☀️《❤️记得收藏❤️》

    如果文章对你有帮助,欢迎关注、点赞、收藏(一键三连)和C#、Halcon、python+opencv、VUE、各大公司面试等一些订阅专栏哦 ️ 承接各种软件开发项目 有任何问题欢迎私信...,看到会及时回复 微信号:stbsl6,微信公众号:苏州程序大白 想加入技术交流群的可以加我好友,群里会分享学习资料 前言 环境搭建: 下载Anaconda搭建Python...中有很多画散点图的方法其中一种是scatterplot(),使用方法是把数据集中的集合分配给方法中的属性,这样不同集合就会使用散点图中不同属性的样式展示出来如下面实例中的色调属性hue获取了数据集中的smoker...绘制kde图还可以使用kdeplot()方法或者rugplot()方法,例如下面的例子 x = np.random.normal(0, 1, size=30) sns.kdeplot(x) sns.kdeplot...(); 图中可以看出,bw属性控制的是kde曲线的拟合程度。

    96420

    数据可视化Seaborn入门介绍

    http://seaborn.pydata.org/examples/index.html Seaborn是基于matplotlib的图形可视化python包。...在联网状态下,可通过load_dataset()接口进行获取,首次下载后后续即可通过缓存加载。返回数据集格式为Pandas.DataFrame对象。...以鸢尾花数据为例,并添加rug图可得如下图表: kdeplot kdeplot是一个专门绘制核密度估计图的接口,虽然distplot中内置了kdeplot图表,并且可通过仅开启kde开关实现kdeplot...的功能,但kdeplot实际上支持更为丰富的功能,比如当传入2个变量时绘制的即为热力图效果。...各日期的小费箱线图中可以看出,周六这一天小费数值更为离散,且男性的小费数值随机性更强;而其他三天的小费数据相对更为稳定。

    2.7K20

    50种常用的matplotlib可视化,再也不用担心模型背着我乱跑了

    种可视化图原地址:https://www.machinelearningplus.com/plots/top-50-matplotlib-visualizations-the-master-plots-python...一个美丽的图表应该: 提供准确、有需求的信息,不歪曲事实; 设计简单,获取时不会太费力; 美感是为了支持这些信息,而不是为了掩盖这些信息; 不要提供太过丰富的信息与太过复杂的结构。...如下所示 pandas 与 numpy 主要用于读取和处理数据,matplotlib 与 seaborn 主要用于可视化数据。...其中 seaborn 其实是 matplotlib 上的一个高级 API 封装,在大多数情况下使用 seaborn 就能做出很有吸引力的图,而使用 matplotlib 能制作更具特色的图。 # !...这种图主要关注某个变量怎样随时间变化而变化,以下展示了 1949 到 1969 航空客运量的变化: # Import Data df = pd.read_csv('https://github.com

    90520

    Python数据分析 | seaborn工具与数据可视化

    其中,Matplotlib属于 Python 数据可视化的基础库,具备很高的灵活度,但应用过于复杂——官方文档有3000 多页,包含上千个方法以及数万个参数。...根据图形的适应场景,Seaborn 的绘图方法大致分类 6 类,这 6 大类下面又包含不同数量的绘图函数: 关联图——relplot 类别图——catplot 分布图——distplot、kdeplot...Seaborn 提供的分布图绘制方法一般有这几个:distplot、kdeplot、jointplot、pairplot。接下来,我们依次来看一下这些绘图方法的使用。...(2)核密度估计图 kdeplot 当然,kdeplot 可以专门用于绘制核密度估计图,其效果和 distplot(hist=False) 一致,但 kdeplot 拥有更多的自定义设置。...本系列教程涉及的速查表可以在以下地址下载获取: Pandas速查表 NumPy速查表 Matplotlib速查表 Seaborn速查表 拓展参考资料 Pandas可视化教程 Seaborn官方教程

    1.8K41

    Python中用Seaborn美化图表的3个示例

    为什么选择Seaborn 令人惊讶的是,流行的Python图表库很少而且功能相差甚远,因为很难进行一刀切的设置:认为Matplotlib旨在反映Matlab输出和ggplot,与R语言中的绘图方式相似...ggplot似乎不是Python固有的,所以感觉我一直在努力使它对我有用。 Plotly有一个“社区版本”,这让我对这部分未来是否许可有一定担忧,因此我通常会远离这些内容。...设计角度和功能上来说,它实际上是相当不错的,并且提供了广泛的产品组合,但是,它并没有比Seaborn好多少。...图表两个侧面分布非常适合视觉上观察边缘分布,而面积图非常适合识别密度较大的区域。 ?...) g.map_offdiag(sns.kdeplot, n_levels=6); 图4:箱形图和晶须图 import seaborn as sns import matplotlib.pyplot as

    1.3K20
    领券