首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python Pandas夜间数据分组

基础概念

Pandas 是一个强大的 Python 数据分析库,提供了大量的数据结构和数据分析工具。其中,groupby 方法是 Pandas 中用于数据分组的核心功能。通过 groupby,你可以根据一个或多个列的值将数据分割成不同的组,然后对每个组进行聚合操作(如求和、平均值、计数等)。

相关优势

  1. 灵活性:可以根据任意列进行分组。
  2. 高效性:Pandas 的内部实现非常高效,能够处理大规模数据集。
  3. 丰富的聚合函数:除了基本的聚合函数(如 sum、mean、count 等),还可以使用自定义的聚合函数。
  4. 易于使用:API 设计简洁直观,易于上手。

类型

Pandas 的 groupby 可以分为以下几种类型:

  1. 单列分组:根据单个列的值进行分组。
  2. 多列分组:根据多个列的值进行分组。
  3. 函数分组:根据某个函数的返回值进行分组。
  4. 时间序列分组:根据时间序列数据进行分组(如按天、按月、按年等)。

应用场景

  1. 数据统计分析:对不同类别的数据进行统计分析,如计算每个类别的平均销售额、总数量等。
  2. 数据透视表:生成数据透视表,展示不同维度下的数据汇总信息。
  3. 时间序列分析:对时间序列数据进行分组,分析不同时间段的数据趋势。

示例代码

假设我们有一个包含销售数据的 DataFrame,如下所示:

代码语言:txt
复制
import pandas as pd

data = {
    'date': ['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-02'],
    'product': ['A', 'B', 'A', 'B'],
    'sales': [100, 200, 150, 250]
}

df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'])

我们可以使用 groupby 方法按日期和产品进行分组,并计算每组的总销售额:

代码语言:txt
复制
# 按日期和产品分组,并计算总销售额
result = df.groupby(['date', 'product'])['sales'].sum().reset_index()
print(result)

输出结果:

代码语言:txt
复制
         date product  sales
0 2023-01-01       A    100
1 2023-01-01       B    200
2 2023-01-02       A    150
3 2023-01-02       B    250

常见问题及解决方法

问题:分组后数据量过大,导致内存不足

原因:处理大规模数据集时,分组后的数据量可能会非常大,导致内存不足。

解决方法

  1. 分块处理:使用 chunksize 参数分块读取数据,逐块进行分组和聚合操作。
  2. 减少内存占用:使用 astype 方法将数据类型转换为更节省内存的类型,如将整数类型从 int64 转换为 int32
代码语言:txt
复制
# 示例:分块处理数据
chunksize = 100000
chunks = pd.read_csv('large_data.csv', chunksize=chunksize)

result = pd.DataFrame()
for chunk in chunks:
    grouped_chunk = chunk.groupby(['date', 'product'])['sales'].sum()
    result = result.add(grouped_chunk, fill_value=0)

result = result.reset_index()
print(result)

问题:分组键存在缺失值

原因:数据中可能存在缺失值,导致分组键不一致。

解决方法

  1. 填充缺失值:使用 fillna 方法填充缺失值。
  2. 删除缺失值:使用 dropna 方法删除包含缺失值的行。
代码语言:txt
复制
# 示例:填充缺失值
df['product'] = df['product'].fillna('Unknown')
result = df.groupby(['date', 'product'])['sales'].sum().reset_index()
print(result)

参考链接

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python数据分析 | Pandas数据分组与操作

数据分析的时候,大部分情况下都会使用Pandas进行操作。...pandas整个系列覆盖以下内容: 图解Pandas核心操作函数大全 图解Pandas数据变换高级函数 Pandas数据分组与操作 一、Pandas数据分组与操作 在我们进行业务数据分析时,经常要对数据根据...2.1 分组 pandas实现分组操作的很简单,只需要把分组的依据(字段)放入groupby中,例如下面示例代码基于company分组: group = data.groupby("company")...2.2 agg 聚合操作 聚合统计操作是groupby后最常见的操作,类比于SQL中我们会对数据按照group做聚合,pandas中通过agg来完成。...系列教程推荐 图解Python编程:从入门到精通系列教程 图解数据分析:从入门到精通系列教程 图解AI数学基础:从入门到精通系列教程 图解大数据技术:从入门到精通系列教程

2.8K41
  • Python数据分析pandas分组统计透视表

    Python数据分析pandas分组统计透视表 大家好,我是架构君,一个会写代码吟诗的架构师...今天说一说Python数据分析pandas分组统计透视表,希望能够帮助大家进步!!!...数据聚合统计 Padans里的聚合统计即是应用分组的方法对数据框进行聚合统计,常见的有min(最小)、max(最大)、avg(平均值)、sum(求和)、var()、std(标准差)、百分位数、中位数等。...数据框概览 可以通过describe方法查看当前数据框里数值型的统计信息,主要包括条数、均值、标准差、最小值、25分位数、50分位数、75分位数、最大值方面的信息。...如果是查看某列的统计信息,在数据框下加“.”列名即可。

    1.6K30

    Pandas 中级教程——数据分组与聚合

    Python Pandas 中级教程:数据分组与聚合 Pandas数据分析领域中广泛使用的库,它提供了丰富的功能来对数据进行处理和分析。...在实际数据分析中,数据分组与聚合是常见而又重要的操作,用于对数据集中的子集进行统计、汇总等操作。本篇博客将深入介绍 Pandas 中的数据分组与聚合技术,帮助你更好地理解和运用这些功能。 1....数据聚合 5.1 常用聚合函数 Pandas 提供了丰富的聚合函数,如 sum、mean、count 等: # 对分组后的数据进行求和 sum_result = grouped['target_column...总结 通过学习以上 Pandas 中的数据分组与聚合技术,你可以更灵活地对数据进行分析和总结。这些功能对于理解数据分布、发现模式以及制定进一步分析计划都非常有帮助。...希望这篇博客能够帮助你更好地掌握 Pandas 中级数据分组与聚合的方法。

    24810

    pandas分组聚合转换

    ,必须明确三个要素:分组依据分组依据、数据来源数据来源、操作及其返回结果操作及其返回结果。...同时从充分性的角度来说,如果明确了这三方面,就能确定一个分组操作,从而分组代码的一般模式: df.groupby(分组依据)[数据来源].使用操作 例如第一个例子中的代码就应该如下: df.groupby...,调用的方法都来自于pandas中的groupby对象,这个对象定义了许多方法,也具有一些方便的属性。...分组之后, 如果走聚合, 每一组会对应一条记录, 当分组之后, 后续的处理不要影响数据的条目数, 把聚合值和每一条记录进行计算, 这时就可以使用分组转换(类似SQL的窗口函数) def my_zscore...题目:请创建一个两列的DataFrame数据,自定义一个lambda函数用来两列之和,并将最终的结果添加到新的列'sum_columns'当中    import pandas as pd data =

    11310

    Python数据处理神器pandas,图解剖析分组聚合处理

    点击上方"数据大宇宙",设为星标,干货资料,第一时间送到! 前言 身边有许多正在学习 Pythonpandas 库做数据处理的小伙伴们都遇到一个问题——分组聚合。...---- 数据 本文大部分例子的数据,如下图定义: ---- 分组 物以类聚,人以群分。...数据处理时同样需要按类别分组处理,面对这样的高频功能需求, pandas 中提供 groupby 方法进行分组。 按 class 进行分组 如下图的代码: 17-19行,两行的写法是一样的。...行21,只有当你需要数据时,才会真正执行分组的运算 返回结果是一个元组(key,每个组的记录的DataFrame)。 你还可以传入具体的数据,他实际会按你传入的数据的值进行分组。...分组只是处理的第一步,一般来说,我们不应该用遍历去处理每个组。 在pandas中,为我们提供了一些聚合方法用于处理组数据。 apply apply 只是一种对每个分组进行处理的通用方式。

    1.3K21

    数据分析之Pandas分组操作总结

    作者:耿远昊,Datawhale成员 Pandas做分析数据,可以分为索引、分组、变形及合并四种操作。...之前介绍过索引操作,现在接着对Pandas中的分组操作进行介绍:主要包含SAC含义、groupby函数、聚合、过滤和变换、apply函数。...在详细讲解每个模块之前,首先读入数据: import numpy as np import pandas as pd df = pd.read_csv('data/table.csv',index_col...分组依据 对于groupby函数而言,分组的依据是非常自由的,只要是与数据框长度相同的列表即可,同时支持函数型分组。...变换(Transformation):即分组对每个单元的数据进行操作(如元素标准化):输入的是每组数据,输出是每组数据经过某种规则变换后的数据,不改变数据的维度。

    7.8K41

    pandas分组聚合详解

    一 前言 pandas学到分组迭代,那么基础的pandas系列就学的差不多了,自我感觉不错,知识追寻者用pandas处理过一些数据,蛮好用的; 知识追寻者(Inheriting the spirit...of open source, Spreading technology knowledge;) 二 分组 2.1 数据准备 # -*- coding: utf-8 -*- import pandas...当对groupby的列只有单个时(示例根据hobby进行分组),可以 使用 key , value 形式 对分组后的数据进行迭代,其中key 是分组的名称,value是分组数据; group =...2.6 通过索引层级分组 传入级别的名称即可实现层级化索引分组 # 创建2个列,并且指定名称 columns = pd.MultiIndex.from_arrays([['Python', 'Java...到此这篇关于pandas分组聚合详解的文章就介绍到这了,更多相关pandas 分组聚合内容请搜索ZaLou.Cn以前的文章或继续浏览下面的相关文章希望大家以后多多支持ZaLou.Cn!

    1.2K10

    pandas分组与聚合

    分组 (groupby) 对数据集进行分组,然后对每组进行统计分析 SQL能够对数据进行过滤,分组聚合 pandas能利用groupby进行更加复杂的分组运算 分组运算过程:split...->apply->combine 拆分:进行分组的根据 应用:每个分组运行的计算规则 合并:把每个分组的计算结果合并起来 示例代码: import pandas as pd import...分组操作 groupby()进行分组,GroupBy对象没有进行实际运算,只是包含分组的中间数据 按列名分组:obj.groupby(‘label’) 示例代码: # dataframe根据key1....groupby(df_obj['key1']))) 运行结果: <class 'pandas.core.groupby.SeriesGroupBy...分组运算 对GroupBy对象进行分组运算or多重分组运算,如mean() 非数值数据不进行分组运算 示例代码: # 分组运算 grouped1 = df_obj.groupby('key1')

    58710

    掌握pandas中的时序数据分组运算

    Python数据分析 ❝本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes ❞ 1 简介 我们在使用...pandas分析处理时间序列数据时,经常需要对原始时间粒度下的数据,按照不同的时间粒度进行分组聚合运算,譬如基于每个交易日的股票收盘价,计算每个月的最低和最高收盘价。...图1 2 在pandas中进行时间分组聚合 在pandas中根据具体任务场景的不同,对时间序列进行分组聚合可通过以下两类方式实现: 2.1 利用resample()对时序数据进行分组聚合 resample...原始的意思是「重采样」,可分为「上采样」与「下采样」,而我们通常情况下使用的都是「下采样」,也就是从高频的数据中按照一定规则计算出更低频的数据,就像我们一开始说的对每日数据按月汇总那样。...如果你熟悉pandas中的groupby()分组运算,那么你就可以很快地理解resample()的使用方式,它本质上就是在对时间序列数据进行“分组”,最基础的参数为rule,用于设置按照何种方式进行重采样

    3.4K10

    Python+Pandas数据处理时的分裂与分组聚合操作

    问题描述: DataFrame对象的explode()方法可以按照指定的列进行纵向展开,一行变多行,如果指定的列中有列表则列表中每个元素展开为一行,其他列的数据进行复制和重复。...如果有多列数据中都有列表,但不同列的结构不相同,可以依次按多列进行展开。 如果有多列数据中都有列表,且每列结构相同,可以一一对应地展开,类似于内置函数zip()的操作。...DataFrame对象的groupby()方法可以看作是explode()方法逆操作,按照指定的列对数据进行分组,多行变一行,每组内其他列的数据根据实际情况和需要进行不同方式的聚合。...如果除分组列之外的其他列进行简单聚合,可以直接调用相应的方法。 如果没有现成的方法可以调用,可以分组之后调用agg()方法并指定可调用对象作为参数,实现自定义的聚合方式。

    1.5K20

    盘点一个Pandas数据分组的问题

    大家好,我是Python进阶者。...一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据分组的问题,问题如下: list1 = '电子税票号码 征收税务机关 社保经办机构 单位编号 费种 征收品目 征收子目 费款所属期...入(退)库日期 实缴(退)金额' list2 = list1.split(' ') path_file = r'C:\Users\Administrator\Desktop\提取数据.xlsx' df...【论草莓如何成为冻干莓】:你分组写入就不用重新赋值了,可以直接写入。 【上海新年人】:哦,我想想。 如果你也有类似这种Python相关的小问题,欢迎随时来交流群学习交流哦,有问必答!...三、总结 大家好,我是Python进阶者。这篇文章主要盘点了一个Python网络爬虫的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    7910

    Pandas基础:列方向分组变形

    小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。 刚才碰到一个非常简单的需求: ? 但是我发现大部分人在做这个题的时候,代码写的异常复杂。...首先读取数据: import pandas as pd df = pd.read_excel("练习.xlsx", index_col=0) df 结果: ?...为了后续处理方便,我将不需要参与分组的第一列事先设置为索引。 groupby分组相信大部分读者都使用过,但一直都是按行分组,不过groupby不仅可以按行分组,还可以按列进行分组。...可以看到,非常简单,仅8行以内的代码已经解决这个问题,剩下的只需在保存到excel时设置一下单元格格式即可,具体设置方法可以参考:Pandas指定样式保存excel数据的N种姿势 简单讲解一下吧: df.columns.str...,axis=1则指定了groupby按列进行分组而不是默认的按行分组

    1.4K20
    领券