首页
学习
活动
专区
圈层
工具
发布

从DataFrame中删除列

在操作数据的时候,DataFrame对象中删除一个或多个列是常见的操作,并且实现方法较多,然而这中间有很多细节值得关注。...注意,删除之后,返回了新的对象,这意味着,你可以用一个新的变量引用删除后得到的结果。...我们知道,如果用类似df.b这样访问属性的形式,也能得到DataFrame对象的列,虽然这种方法我不是很提倡使用,但很多数据科学的民工都这么干。...当然,并不是说DataFrame对象的类就是上面那样的,而是用上面的方式简要说明了一下原因。 所以,在Pandas中要删除DataFrame的列,最好是用对象的drop方法。...另外,特别提醒,如果要创建新的列,也不要用df.column_name的方法,这也容易出问题。

12.5K20

PySpark SQL——SQL和pd.DataFrame的结合体

1)创建DataFrame的方式主要有两大类: 从其他数据类型转换,包括RDD、嵌套list、pd.DataFrame等,主要是通过spark.createDataFrame()接口创建 从文件、数据库中读取创建...DataFrame既然可以通过其他类型数据结构创建,那么自然也可转换为相应类型,常用的转换其实主要还是DataFrame=>rdd和DataFrame=>pd.DataFrame,前者通过属性可直接访问...fill:广义填充 drop:删除指定列 最后,再介绍DataFrame的几个通用的常规方法: withColumn:在创建新列或修改已有列时较为常用,接收两个参数,其中第一个参数为函数执行后的列名...(若当前已有则执行修改,否则创建新列),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列...基础上增加或修改一列,并返回新的DataFrame(包括原有其他列),适用于仅创建或修改单列;而select准确的讲是筛选新列,仅仅是在筛选过程中可以通过添加运算或表达式实现创建多个新列,返回一个筛选新列的

12.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    最简单的方式是通过Anaconda使用Python,因其安装了足够的IDE包,并附带了其他重要的包。 1、下载Anaconda并安装PySpark 通过这个链接,你可以下载Anaconda。...第一步:从你的电脑打开“Anaconda Prompt”终端。 第二步:在Anaconda Prompt终端中输入“conda install pyspark”并回车来安装PySpark包。...3、创建数据框架 一个DataFrame可被认为是一个每列有标题的分布式列表集合,与关系数据库的一个表格类似。...3.1、从Spark数据源开始 DataFrame可以通过读txt,csv,json和parquet文件格式来创建。...('new_column', F.lit('This is a new column')) display(dataframe) 在数据集结尾已添加新列 6.2、修改列 对于新版DataFrame API

    16K21

    大数据开发!Pandas转spark无痛指南!⛵

    图解数据分析:从入门到精通系列教程图解大数据技术:从入门到精通系列教程图解机器学习算法:从入门到精通系列教程数据科学工具库速查表 | Spark RDD 速查表数据科学工具库速查表 | Spark SQL...通过 SparkSession 实例,您可以创建spark dataframe、应用各种转换、读取和写入文件等,下面是定义 SparkSession的代码模板:from pyspark.sql import...SparkSessionspark = SparkSession\.builder\.appName('SparkByExamples.com')\.getOrCreate() 创建 dataframe...DataFrame的 Pandas 语法如下:df = pd.DataFrame(data=data, columns=columns)# 查看头2行df.head(2) PySpark创建DataFrame...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数

    10K72

    PySpark UD(A)F 的高效使用

    当在 Python 中启动 SparkSession 时,PySpark 在后台使用 Py4J 启动 JVM 并创建 Java SparkContext。...如果工作流从 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...GROUPED_MAP UDF是最灵活的,因为它获得一个Pandas数据帧,并允许返回修改的或新的。 4.基本想法 解决方案将非常简单。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...如果的 UDF 删除列或添加具有复杂数据类型的其他列,则必须相应地更改 cols_out。

    24.4K31

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...、创建dataframe # 从pandas dataframe创建spark dataframe colors = ['white','green','yellow','red','brown','pink...FirstName","LastName","Dob"]) df.drop_duplicates(subset=['FirstName']) 12、 生成新列 # 数据转换,可以理解成列与列的运算 #...注意自定义函数的调用方式 # 0.创建udf自定义函数,对于简单的lambda函数不需要指定返回值类型 from pyspark.sql.functions import udf concat_func...df1.withColumn('Initial', df1.LastName.substr(1,1)).show() # 4.顺便增加一新列 from pyspark.sql.functions import

    11.5K10

    Spark Extracting,transforming,selecting features

    ; 转换:缩放、转换、修改特征; 选择:从大的特征集合中选择一个子集; 局部敏感哈希:这一类的算法组合了其他算法在特征转换部分(LSH最根本的作用是处理海量高维数据的最近邻,也就是相似度问题,它使得相似度很高的数据以较高的概率映射为同一个...设置参数maxCategories; 基于列的唯一值数量判断哪些列需要进行类别索引化,最多有maxCategories个特征被处理; 每个特征索引从0开始; 索引类别特征并转换原特征值为索引值; 下面例子...4.0 4.0 5.0 5.0 在这个例子中,Imputer会替换所有Double.NaN为对应列的均值,a列均值为3,b列均值为4,转换后,a和b中的NaN被3和4替换得到新列: a b out_a...,这对于对向量列做特征提取很有用; VectorSlicer接收包含指定索引的向量列,输出新的向量列,新的向量列中的元素是通过这些索引指定选择的,有两种指定索引的方式: 通过setIndices()方法以整数方式指定下标...,字符串输入列会被one-hot编码,数值型列会被强转为双精度浮点,如果标签列是字符串,那么会首先被StringIndexer转为double,如果DataFrame中不存在标签列,输出标签列会被公式中的指定返回变量所创建

    23.1K41

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...— 2.2 新增数据列 withColumn— withColumn是通过添加或替换与现有列有相同的名字的列,返回一个新的DataFrame result3.withColumn('label', 0)...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark...的DataFrame处理方法:增删改差 Spark-SQL之DataFrame操作大全 Complete Guide on DataFrame Operations in PySpark

    33K10

    【PySpark入门】手把手实现PySpark机器学习项目-回归算法

    这篇文章手把手带你入门PySpark,提前感受工业界的建模过程! 任务简介 在电商中,了解用户在不同品类的各个产品的购买力是非常重要的!这将有助于他们为不同产品的客户创建个性化的产品。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...中成功的添加了一个转化后的列“product_id_trans”,("Train1" Dataframe)。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的列;我们还必须为为features列和label列指定名称...为了评估模型,我们需要从pyspark.ml.evaluation中导入RegressionEvaluator。我们必须为此创建一个对象。

    8.6K51

    手把手实现PySpark机器学习项目-回归算法

    这篇文章手把手带你入门PySpark,提前感受工业界的建模过程! 任务简介 在电商中,了解用户在不同品类的各个产品的购买力是非常重要的!这将有助于他们为不同产品的客户创建个性化的产品。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...中成功的添加了一个转化后的列“product_id_trans”,("Train1" Dataframe)。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的列;我们还必须为为features列和label列指定名称...为了评估模型,我们需要从pyspark.ml.evaluation中导入RegressionEvaluator。我们必须为此创建一个对象。

    9K70

    【PySpark入门】手把手实现PySpark机器学习项目-回归算法

    分析数据的类型 要查看Dataframe中列的类型,可以使用printSchema()方法。让我们在train上应用printSchema(),它将以树格式打印模式。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...中成功的添加了一个转化后的列“product_id_trans”,("Train1" Dataframe)。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的列;我们还必须为为features列和label列指定名称...为了评估模型,我们需要从pyspark.ml.evaluation中导入RegressionEvaluator。我们必须为此创建一个对象。

    6.7K20

    【PySpark入门】手把手实现PySpark机器学习项目-回归算法

    这篇文章手把手带你入门PySpark,提前感受工业界的建模过程! 任务简介 在电商中,了解用户在不同品类的各个产品的购买力是非常重要的!这将有助于他们为不同产品的客户创建个性化的产品。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...中成功的添加了一个转化后的列“product_id_trans”,("Train1" Dataframe)。...选择特征来构建机器学习模型 首先,我们需要从pyspark.ml.feature导入RFormula;然后,我们需要在这个公式中指定依赖和独立的列;我们还必须为为features列和label列指定名称...为了评估模型,我们需要从pyspark.ml.evaluation中导入RegressionEvaluator。我们必须为此创建一个对象。

    2.6K20
    领券