首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Mysql中的列类型

Mysql中的列类型: 数字类型 字符串类型 布尔型 日期时间类型 数字类型: 1个字节=8比特,但数字里有一个比特用于符号占位 TINYINT 占用1个字节,表示范围:-128~127 SMALLINT...支持的范围是1000-01-01 ~ 9999-12-31 TIME 支持的范围是00:00:00 ~ 23:59:59 DATETIME 支持的范围是1000-01-01 00:00:00 ~ 9999...电话、手机号码:有格式要求 用户名:必须唯一 登录密码:密码不能为空字符串且长度不能少于N位 员工所在部门:可取值必须在部门表中存在过 主键约束: 列名 类型 PRIMARY KEY 声明为“...表中所有的记录行会自动按照主键列上的值进行排序。 一个表至多只能有一个主键列。 唯一约束: 列名 类型 UNIQUE 声明为“唯一”的列上不能出现重复值,但可以出现多个NULL值。...非空约束: 列名 类型 NOT NULL 声明为“非空”约束的列上不能出现NULL,但可以重复 检查约束对于Mysql不支持 默认值约束 列名 类型 Default 值 声明为“默认值”约束的列上没有值的将会默认采用默认设置的值

6.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    合并列,在【转换】和【添加列】菜单中的功能竟有本质上的差别!

    有很多功能,同时在【转换】和【添加】两个菜单中都存在,而且,通常来说,它们得到的结果列是一样的,只是在【转换】菜单中的功能会将原有列直接“转换”为新的列,原有列消失;而在【添加】菜单中的功能,则是在保留原有列的基础上...,“添加”一个新的列。...比如下面这份数据: 将“产品1~产品4”合并到一起,通过添加列的方式实现: 结果如下,其中的空值直接被忽略掉了: 而通过转换合并列的方式: 结果如下,空的内容并没有被忽略,所以中间看到很多个连续分号的存在...我们看一下生成的步骤公式就清楚了! 原来,添加列里使用的内容合并函数是:Text.Combine,而转换里使用的内容合并函数是:Combiner.CombineTextByDelimiter。...显然,我们只要将其所使用的函数改一下就OK了,比如转换操作生成的步骤公式修改如下: 同样的,如果希望添加列里,内容合并时保留null值,则可以进行如下修改: 这个例子,再次说明,绝大多数的时候,我们只需要对操作生成的步骤公式进行简单的调整

    2.6K30

    删除列中的 NULL 值

    图 2 输出的结果 先来分析图 1 是怎么变成图 2,图1 中的 tag1、tag2、tag3 三个字段都存在 NULL 值,且NULL值无处不在,而图2 里面的NULL只出现在这几个字段的末尾。...有一个思路:把每一列去掉 NULL 后单独拎出来作为一张独立的表,这个表只有两个字段,一个是序号,另一个是去 NULL 后的值。...比如 tag1 列变成 t1 表,tag2 列变成 t2 表,tag3 列变成 t3 表。...一个比较灵活的做法是对原表的数据做列转行,最后再通过行转列实现图2 的输出。具体的实现看下面的 SQL(我偷懒了,直接把原数据通过 SELECT 子句生成了)。...,按值在原表的列出现的顺序设置了序号,目的是维持同一列中的值的相对顺序不变。

    9.9K30

    Pandas 中三个对列转换的小操作

    前言 本文主要介绍三个对列转换的小操作: split 按分隔符将列分割成多个列 astype 转换列为其它类型 将对应列上的字符转换为大写或小写 创建 DataFrame 首先,导入 Pandas 模块...df_dev.set_index("dev_id", inplace = True) df_dev df_dev.set_index("dev_id", inplace = True) 使用 df_dev 中已经存在的列来创建...= -1,则会返回 I, am, KangChen. n = 1,则会返回 I, am KangChen. n = 2,则会但会 I, am, KangChen. expand = True 将分割的字符串转换为单独的列...astype 转换列为其它类型 我们可以使用 astype() 将 age 列转换为字符串类型,将 salary 列转换为浮点型。...df_dev['age'] = df_dev['age'].astype(str) df_dev['salary'] = df_dev['salary'].astype(float) df_dev 将对应列上的字符转换为大写或小写

    1.2K20

    【PostgreSQL系列】列类型从整数转换为 UUID

    在某些情况下,我们可能需要将tenant_id列的类型从整数(int)转换为更通用和灵活的 UUID 类型。...相比之下,整数类型虽然在单个数据库中可以保证唯一性,但在分布式系统中,不同数据库之间的整数可能会发生冲突。 扩展性:随着业务的扩展,可能会有新的租户加入。...评估影响:评估业务逻辑中所有依赖tenant_id的地方,确保转换后这些依赖仍然有效。 测试环境:在测试环境中模拟转换过程,确保转换后的数据库能够正常工作。...public.upload_files ALTER COLUMN tenant_id TYPE uuid USING tenant_id::uuid; 这里,USING tenant_id::uuid告诉数据库将tenant_id列中的每个整数转换为对应的...代码修改:应用程序中所有依赖tenant_id的代码可能需要修改,以适应新的 UUID 类型。 数据一致性:在转换过程中,需要确保数据的一致性不受影响。这可能涉及到数据校验和清理工作。

    5700

    Redis中的散列类型详解

    在Redis中,Hash是一种存储键值对的数据结构,它适用于存储对象的多个属性。Jedis作为Java开发者与Redis交互的工具,提供了丰富的API来操作Hash类型。...本文将深入介绍Jedis如何操作Redis中的Hash类型数据,通过生动的代码示例和详细的解释,助你轻松掌握Jedis中Hash的各种操作。Jedis中Hash的基本操作1....删除字段可以使用HDEL命令删除Hash类型数据中的一个或多个字段,在Jedis中,对应的方法是hdel:// 删除一个字段jedis.hdel("myHash", "field1");// 删除多个字段...中的Hash类型数据。...希望通过学习本文,你对Jedis中Hash的操作有了更深入的理解,并能够灵活运用在你的项目中。在实际开发中,充分发挥Jedis的优势,将有助于提升系统性能和代码质量。

    24920

    SQL中的行转列和列转行

    而在SQL面试中,一道出镜频率很高的题目就是行转列和列转行的问题,可以说这也是一道经典的SQL题目,本文就这一问题做以介绍分享。 ? 给定如下模拟数据集,这也是SQL领域经典的学生成绩表问题。...scoreWide 考察的问题就是通过SQL语句实现在这两种形态间转换,其中长表转为宽表即行转列,宽表转为长表即列转行。...其基本的思路是这样的: 在长表的数据组织结构中,同一uid对应了多行,即每门课程一条记录,对应一组分数,而在宽表中需要将其变成同一uid下仅对应一行 在长表中,仅有一列记录了课程成绩,但在宽表中则每门课作为一列记录成绩...,然后将该列命名为course;第二个用反引号包裹起来的课程名实际上是从宽表中引用这一列的取值,然后将其命名为score。...这实际上对应的一个知识点是:在SQL中字符串的引用用单引号(其实双引号也可以),而列字段名称的引用则是用反引号 上述用到了where条件过滤成绩为空值的记录,这实际是由于在原表中存在有空值的情况,如不加以过滤则在本例中最终查询记录有

    7.2K30

    Pandas中的数据转换

    bmi return x temp_data.apply(transfor, axis=1)# BMI = # apply Pandas中的axis参数=0时,永远表示的是处理方向而不是聚合方向....*", " ") 再来看下分割操作,例如根据空字符串来分割某一列 user_info.city.str.split(" ") 分割列表中的元素可以使用 get 或 [] 符号进行访问: user_info.city.str.split...Series中的每个字符串 slice_replace() 用传递的值替换每个字符串中的切片 count() 计数模式的发生 startswith() 相当于每个元素的str.startswith(pat...常用到的函数有:map、apply、applymap。 map 是 Series 中特有的方法,通过它可以对 Series 中的每个元素实现转换。...(c)将(b)中的ID列结果拆分为原列表相应的5列,并使用equals检验是否一致。

    13510

    SQL 中的行转列和列转行

    行转列,列转行是我们在开发过程中经常碰到的问题。行转列一般通过CASE WHEN 语句来实现,也可以通过 SQL SERVER 的运算符PIVOT来实现。用传统的方法,比较好理解。...但是PIVOT 、UNPIVOT提供的语法比一系列复杂的SELECT…CASE 语句中所指定的语法更简单、更具可读性。下面我们通过几个简单的例子来介绍一下列转行、行转列问题。...这也是一个典型的行转列的例子。...实际中,可能支付方式特别多,而且逻辑也复杂很多,可能涉及汇率、手续费等等(曾经做个这样一个),如果支付方式特别多,我们的CASE WHEN 会弄出一大堆,确实比较恼火,而且新增一种支付方式,我们还得修改脚本如果把上面的脚本用动态...下面我们来看看列转行,主要是通过UNION ALL ,MAX来实现。

    5.5K20

    读取文档数据的各列的每行中

    读取文档数据的各列的每行中 1、该文件的内容被读 [root@dell leekwen]# cat userpwd 1412230101 ty001 1412230102 ty002..., 它的第一列值是1512430102, 它的第二列值为ty003 当前处理的是第4, 内容是:1511230102 ty004, 它的第一列值是1511230102,...它的第二列值为ty004 当前处理的是第5, 内容是:1411230102 ty002, 它的第一列值是1411230102, 它的第二列值为ty002 当前处理的是第6, 内容是...它的第一列值是1412290102, 它的第二列值为yt012 当前处理的是第8, 内容是:1510230102 yt022, 它的第一列值是1510230102,...它的第二列值为yt022 当前处理的是第9, 内容是:1512231212 yt032, 它的第一列值是1512231212, 它的第二列值yt032 版权声明:本文博客原创文章

    2K40
    领券