首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

一行 pandas 代码搞定 Excel 条件格式!

本次给大家介绍pandas表格可视化的几种常用技巧。 条件格式 Excel的 “条件格式” 是非常棒的功能,通过添加颜色条件可以让表格数据更加清晰的凸显出统计特性。...但其实一点不复杂,而且只需一行代码即可。 为什么可以做到一行代码实现 “条件格式”? 一是使用了pandas的style方法,二是要得益于pandas的链式法则。...import pandas as pd df = pd.read_csv("test.csv") df 可以看到,现在这个dataframe是空白的,什么都没有的,现在要给表格添加一些条件。...1、比如我们想让Fare变量值呈现条形图,以清楚看出各个值得大小比较,那么可直接使用bar代码如下。...,还可以继续让链式更长,但不论条件怎么多,都只是一行代码。

27230

pandas100个骚操作:一行 pandas 代码搞定 Excel “条件格式”!

本篇是pandas100个骚操作系列的第 7 篇:一行 pandas 代码搞定 Excel “条件格式”! 系列内容,请看?「pandas100个骚操作」话题,订阅后文章更新可第一时间推送。...但其实一点不复杂,而且只需一行代码即可。 为什么可以做到一行代码实现 “条件格式”? 一是使用了pandas的style方法,二是要得益于pandas的链式法则。...1、比如我们想让Fare变量值呈现条形图,以清楚看出各个值得大小比较,那么可直接使用bar代码如下。 df.style.bar("Fare",vmin=0) ?...当然,如果你希望加更多的条件格式效果,还可以继续让链式更长,但不论条件怎么多,都只是一行代码。...关于style条件格式的所有用法,可以参考pandas的官方文档。

2.7K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    懂Excel轻松入门Python数据分析包pandas(二十四):连续区域

    Excel 中的实现方式直观简单 如下一份简单的记录表: - 需要根据这份数据,得到最长连续下雨天数是多少,是几号到几号 - 上图红框是一部分符合条件的,其中最长的红框是需要的结果 按照惯例,先看看如果在...对比 C列 与 D列 是否不一样 - F列:对 E列 的结果数值化,True 为1,False 为0 - G列:累计求和,上图可直接看到 G2 单元格的公式,不多说了 - 注意看 G列 的内容,相当于根据...C列的内容,相同连续值被划分到一个独立的编号 - 接下来只需要条件筛选+分组统计,即可简单求出结果 后面的条件筛选+分组不再用 Excel 操作了(因为操作比较麻烦) pandas 中的对应实现...现在关键是怎么在 pandas 中完成上述 Excel 中的操作,实际非常简单: - 行2:简单完成 - df.下雨.shift() 相当于 Excel 操作中的 D列 - (df.下雨.shift(...: - 行4:筛选下雨的行的条件 - 行6:先对 df 过滤下雨的行,按 diff_nums 分组统计 - 结果是一下子统计出各个连续下雨的天数与日期范围 结果是需要得到其中 count 列的最大值的行

    1.3K30

    懂Excel轻松入门Python数据分析包pandas(二十四):连续区域

    Excel 中的实现方式直观简单 如下一份简单的记录表: - 需要根据这份数据,得到最长连续下雨天数是多少,是几号到几号 - 上图红框是一部分符合条件的,其中最长的红框是需要的结果 按照惯例,先看看如果在...对比 C列 与 D列 是否不一样 - F列:对 E列 的结果数值化,True 为1,False 为0 - G列:累计求和,上图可直接看到 G2 单元格的公式,不多说了 - 注意看 G列 的内容,相当于根据...C列的内容,相同连续值被划分到一个独立的编号 - 接下来只需要条件筛选+分组统计,即可简单求出结果 后面的条件筛选+分组不再用 Excel 操作了(因为操作比较麻烦) pandas 中的对应实现...现在关键是怎么在 pandas 中完成上述 Excel 中的操作,实际非常简单: - 行2:简单完成 - df.下雨.shift() 相当于 Excel 操作中的 D列 - (df.下雨.shift(...: - 行4:筛选下雨的行的条件 - 行6:先对 df 过滤下雨的行,按 diff_nums 分组统计 - 结果是一下子统计出各个连续下雨的天数与日期范围 结果是需要得到其中 count 列的最大值的行

    1.1K30

    高效的10个Pandas函数,你都用过吗?

    让pandas如此受欢迎的原因是它简洁、灵活、功能强大的语法。 这篇文章将会配合实例,讲解10个重要的pandas函数。其中有一些很常用,相信你可能用到过。...介绍这些函数之前,第一步先要导入pandas和numpy。 import numpy as np import pandas as pd 1....= pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1, 'value_2':values_2}) df 过滤查询用起来比较简单...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。...3 名 method=min: 两人并列第 1 名,下一个人是第 3 名 method=dense: 两人并列第1名,下一个人是第 2 名 method=first: 相同值会按照其在序列中的相对位置定值

    4.2K20

    懂Excel也能轻松入门Python数据分析包pandas(二):高级筛选(上)

    pandas 中没有啥高级筛选的说法,因为他的筛选本来就很灵活,看看 pandas 的实现: - 简单易懂,都是之前文章介绍过的,这里不多说 特定值过滤 "4、5或7班的记录",Excel 高级筛选的条件区域设置如下..." 即可 范围过滤 "总分450至500之间的记录",Excel 高级筛选的条件区域设置如下: - 数据源没有总分列,添加一个 sum 公式的总分列 - 条件区域在同一行,表示"并且"关系 -...条件值可以直接使用常用的比较符号 - 还是要注意条件标题"总分" pandas 实现如下: - 第一句,添加新列,总和列。...因为 pandas 可以灵活对行或列做运算,通过 axis 即可表达运算是对行还是列操作。...中的逻辑关键字 and 或 or 这些都可以 下篇预告 本文从 Excel 高级筛选角度介绍简单的应用,下一篇将讲解更复杂的应用,先看看有哪些复杂需求: - "总分高于全班平均分的学生",这需要每行记录与整体平均对比

    1.2K20

    懂Excel也能轻松入门Python数据分析包pandas(二):高级筛选(上)

    pandas 中没有啥高级筛选的说法,因为他的筛选本来就很灵活,看看 pandas 的实现: - 简单易懂,都是之前文章介绍过的,这里不多说 特定值过滤 "4、5或7班的记录",Excel 高级筛选的条件区域设置如下..." 即可 范围过滤 "总分450至500之间的记录",Excel 高级筛选的条件区域设置如下: - 数据源没有总分列,添加一个 sum 公式的总分列 - 条件区域在同一行,表示"并且"关系 -...条件值可以直接使用常用的比较符号 - 还是要注意条件标题"总分" pandas 实现如下: - 第一句,添加新列,总和列。...因为 pandas 可以灵活对行或列做运算,通过 axis 即可表达运算是对行还是列操作。...中的逻辑关键字 and 或 or 这些都可以 下篇预告 本文从 Excel 高级筛选角度介绍简单的应用,下一篇将讲解更复杂的应用,先看看有哪些复杂需求: - "总分高于全班平均分的学生",这需要每行记录与整体平均对比

    1.6K10

    30 个小例子帮你快速掌握Pandas

    avg = df['Balance'].mean() df['Balance'].fillna(value=avg, inplace=True) fillna函数的method参数可用于根据列中的上一个或下一个值填充缺失值...df.isna().sum().sum() --- 0 9.根据条件选择行 在某些情况下,我们需要适合某些条件的观察值(即行)。例如,下面的代码将选择居住在法国并且已经流失的客户。...符合指定条件的值将保持不变,而其他值将替换为指定值。 20.排名函数 它为这些值分配一个等级。让我们创建一个根据客户余额对客户进行排名的列。...29.根据字符串过滤 我们可能需要根据文本数据(例如客户名称)过滤观察结果(行)。我已经将虚构名称添加到df_new DataFrame中。 ? 让我们选择客户名称以Mi开头的行。...endswith函数根据字符串末尾的字符进行相同的过滤。 Pandas可以对字符串进行很多操作。

    10.8K10

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...Pandas的query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套。...使用单一条件进行过滤 在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。返回的输出将包含该表达式评估为真的所有行。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本过滤 对于文本列过滤时,条件是列名与字符串进行比较。

    24120

    10快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套 在后端pandas使用eval()函数对该表达式进行解析和求值,并返回表达式被求值为TRUE...返回的输出将包含该表达式评估为真的所有行。 示例1 提取数量为95的所有行,因此逻辑形式中的条件可以写为 - Quantity == 95 需要将条件写成字符串,即将其包装在双引号“”中。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如 df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。

    4.5K10

    10个快速入门Query函数使用的Pandas的查询示例

    在开始之前,先快速回顾一下pandas -中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...pandas query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套。...使用单一条件进行过滤 在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。返回的输出将包含该表达式评估为真的所有行。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本列过滤 对于文本列过滤时,条件是列名与字符串进行比较。

    4.4K20

    整理了10个经典的Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas中的查询函数query。查询函数用于根据指定的表达式提取记录,并返回一个新的DataFrame。表达式是用字符串形式表示的条件或条件的组合。...PANDAS中的DATAFRAME(.loc和.iloc)属性用于根据行和列标签和索引提取数据集的子集。因此,它并不具备查询的灵活性。...Pandas的query()函数可以灵活地根据一个或多个条件提取子集,这些条件被写成表达式并且不需要考虑括号的嵌套。...使用单一条件进行过滤 在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。返回的输出将包含该表达式评估为真的所有行。...其实这里的条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本过滤 对于文本列过滤时,条件是列名与字符串进行比较。

    3.9K20

    懂Excel轻松入门Python数据分析包pandas(29):轻松做出筛选控件

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 前言 本系列介绍了许多类比 Excel 的 pandas 操作,确实他们都能很好对应起来,这是因为 pandas...---- 透视表的灵活性 当我们拿到一份数据时,经常需要不断改变条件对数据进行观测,如下一份某水果的销售情况: 一行数据表示,某天(date)在某地区(region)此水果的某个品种(type)的价格...处理 本文需要导入的库是这些: 首先使用 pandas 得到透视表的结果,这非常简单: 行3,4:为了突出可以变化的东西,这里定义2个变量 通过修改2个变量,我们能得到对应的结果数据 但是这远远不够...我们稍微加工一下这个过程,定义一个函数: 现在好一些,但是改变条件仍然需要修改代码 简单加上一个装饰器即可: 行1:@wg.interact 是一个装饰器,打到我们的自定义函数上 其中每个命名参数为自定义函数上的参数...,下方的结果会马上刷新,这与 Excel 中的透视表一模一样 不过,大家都知道 Excel 中还能根据透视表制作透视图,这里我们同样可以制作出动态变化的图表: 行13,14:使用 display 方法

    94120
    领券