本文主要是关于pandas的一些基本用法。 #!.../usr/bin/env python # _*_ coding: utf-8 _*_ import pandas as pd import numpy as np # Test 1 # 创建DataFrame..., df2, df3], axis = 1) print res # 合并的同时index重新排序 res = pd.concat([df1, df2, df3], axis = 0, ignore_index...1.0 1.0 6 2.0 2.0 2.0 2.0 7 2.0 2.0 2.0 2.0 8 2.0 2.0 2.0 2.0 # Test 3 # 创建DataFrame, 部分索引重合...res = pd.concat([df1, df2], axis = 1) print res # 横向合并, 按照df1的index, 忽略df2不一致的index res = pd.concat
阅读完本,你可以知道: 1 数据合并是什么 2 pandas的concat()方法使用 1 数据合并 数据合并是PDFMV框架中Data环节的重要操作之一。...当我们为要解决的业务问题需要整合各方数据时,意味着需要进行数据合并处理了。数据合并的可以纵向合并,也可以横向合并,前者是按列拓展,生成长数据;后者是按行延伸,生成宽数据,也就是我们常说的宽表。 ?...2 pandas的concat()方法 pandas库提供了concat()方法来完成数据的合并。...,设置为某个数据框的索引,表示按着指定索引进行数据横向合并 例子1: import pandas as pd data1 = {'Name':['Jai', 'Princi', 'Gaurav',...) # 输出数据框结果 print(df, "\n\n", df1) # 数据合并-横向延伸 # 横向拓展设置axis=1,指定索引设置join_axes res4 = pd.concat([df
文章来源:Python数据分析 参考学习资料: http://pandas.pydata.org 1.什么是Pandas Pandas的名称来自于面板数据(panel data)和Python数据分析...Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一。...一个强大的分析和操作大型结构化数据集所需的工具集 基础是NumPy,提供了高性能矩阵的运算 提供了大量能够快速便捷地处理数据的函数和方法 应用于数据挖掘,数据分析 提供数据清洗功能 ---- 2.Pandas...的数据结构 import pandas as pd Pandas有两个最主要也是最重要的数据结构: Series 和 DataFrame Series Series是一种类似于一维数组的 对象...,可将其看作ndarray的索引操作 标签的切片索引是包含末尾位置的 ---- 4.Pandas的对齐运算 是数据清洗的重要过程,可以按索引对齐进行运算,如果没对齐的位置则补NaN,最后也可以填充
一文搞定pandas的数据合并 在实际处理数据业务需求中,我们经常会遇到这样的需求:将多个表连接起来再进行数据的处理和分析,类似SQL中的连接查询功能。...pandas中也提供了几种方法来实现这个功能,表现最突出、使用最为广泛的方法是merge。本文中将下面四种方法及参数通过实际案例来进行具体讲解。...import pandas as pd import numpy as np merge 官方参数 官方提供的merge函数的参数如下: [007S8ZIlgy1gioc2cmbfzj317i0ccdin.jpg...] concat 官方参数 concat方法是将两个DataFrame数据框中的数据进行合并 通过axis参数指定是在行还是列方向上合并 参数ignore_index实现合并后的索引重排 [007S8ZIlgy1gioc098torj317u084q4t.jpg...] 生成数据 [007S8ZIlgy1giouhnpul3j316e0p2tbe.jpg] 指定合并轴 [007S8ZIlgy1giouj3l1dxj313k0ngacp.jpg] 改变索引 [007S8ZIlgy1giouk8j4lqj310m0ridif.jpg
import pandas as pd import numpy as np 一、回顾Numpy数组的合并 Numpy 数组的合并使用np.concatenate()方法。...DataFrame对象 np.concatenate与pd.concat最主要的差异就是 Pandas 合并时会保留索引,并且允许索引是重复的。...ignore_index:如果为 True,则忽略附加的数据的索引,并为结果 DataFrame 分配一个新的整数索引。默认为 False。...上面语句之所以要赋值,是因为 Pandas 中的append不会直接修改原始的df1对象。...join方法就是基于索引进行的列合并,如果两个数据集有重复的列名,需指定lsuffix,rsuffix参数。
介绍当时我合并博客文章数据时遇到的一个问题和解决方法。我不擅长SQL,如果大家有更好的方法,欢迎在评论里留言讨论。 最近在整理博客的数据,需要做一个操作就是合并文章的分类。...我的博客中文章和分类是多对多的关系。即一篇文章可以属于多个分类,一个分类可以包含多篇文章。这是一个很典型的多对多关系,我用的是一个多对多的表,做联合主键关联这些数据。 就像这样: ? ?...更新关联表,把旧分类的ID改成新分类 那么首先我们要知道有哪些记录是符合被删除的条件的,把这些文章的ID找出来,用一个group by having就可以爆出来: SELECT pc.PostId FROM...然后就可以从关联表PostCategory中删除所有文章ID(PostId)在@Temp表中,且CategoryId对应DotNetBeginner的记录。然后用update语句完成文章分类的合并。...UPDATE PostCategory SET CategoryId = @TargetCatId WHERE CategoryId = @SourceCatId 最后验证一下,数据已经成功合并了
pandas数据处理功能强大,可以方便的实现数据的合并与拼接,具体是如何实现的呢?...'_x', '_y'); copy:默认为True,总是将数据复制到数据结构中,设置为False可以提高性能; indicator:显示合并数据中数据的来源情况 举例: ?...多键连接时将连接键组成列表传入,例:pd.merge(df1,df2,on=['key1','key2'] ? ? 如果两个对象的列名不同,可以使用left_on,right_on分别指定 ? ?...该方法最为简单,主要用于索引上的合并。 举例: ? ? 使用join,默认使用索引进行关联 ? 使用merge,指定使用索引进行关联,代码更复杂 ? 使用concat,默认索引全部保留 ?...总结 1、join 最简单,主要用于基于索引的横向合并拼接 2、merge 最常用,主要用于基于指定列的横向合并拼接 3、concat最强大,可用于横向和纵向合并拼接 4、append,主要用于纵向追加
与传统的按位置索引不同,条件索引基于逻辑表达式选择数组中的元素。条件索引在数据筛选、过滤、替换等操作中极为常用。 条件索引的基本应用 假设有一个数组,想要从中提取所有大于某个值的元素。...条件索引的性能优化 Numpy的条件索引在处理大规模数据时非常高效,因为它利用了底层的C语言实现,避免了Python中的循环操作。然而,对于非常大的数组,仍有一些性能优化技巧可以帮助进一步提升速度。...即使对于大数据集,条件索引的执行速度也非常快。 常见问题与注意事项 1. 条件索引的返回值 条件索引返回的是一个新的数组,原数组不会被修改。...除非显式地对原数组赋值,否则条件索引操作是不会影响原数据的。 2. 布尔数组的长度匹配 在进行条件索引时,生成的布尔数组必须与原数组的形状一致。否则,Numpy会报错提示形状不匹配。...本文详细介绍了条件索引的基本操作、多个条件的组合、应用于多维数组的方法,以及常见的优化技巧。通过条件索引,处理复杂的数组数据变得更加简洁和高效。
文章目录 情景 查询方法 通过命令实现范围查询 通过 API 实现范围查询 情景 在使用 Elasticsearch 的时候,我们可能会遇到需要以范围为条件查询索引数据的需求。...有两种方法可以实现我们的需求: 第一种:在服务器或者终端,使用命令来查询索引数据; 第二种:编写程序,通过 Elasticsearch 的 API 来查询索引数据。...接下来,我们就以时间范围为例,详述这两种查询索引数据的方法。...,其中*表示模糊匹配; 标注 3:待查范围字段,根据查询的需求进行替换; 标注 4:范围条件,有四种比较符号,分别为 gt,greater than的缩写,表示>大于 lt,less than的缩写...最后,还有一点需要我们特别注意,那就是 Elasticsearch 索引中存储的时间格式。如果两者不一致,我们需要在查询前进行转换! 好了,本篇文章到这里就要结束了,希望能够对大家有所帮助。
据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感...第一篇潘大师(初识Pandas)教程考虑到篇幅问题只讲了最基础的列向索引,但这显然不能满足同志们日益增长的个性化服务(选取)需求。...第二种是基于名称(标签)的索引,这是要敲黑板练的重点,因为它将是我们后面进行数据清洗和分析的重要基石。 首先,简单介绍一下练习的案例数据: ?...要三个条件同时满足,他们之间是一个“且”的关系(同时满足),在pandas中,要表示同时满足,各条件之间要用"&"符号连接,条件内部最好用括号区分;如果是“或”的关系(满足一个即可),则用“|”符号连接...只要稍加练习,我们就能够随心所欲的用pandas处理和分析数据,迈过了这一步之后,你会发现和Excel相比,Python是如此的美艳动人。
有时候会有这样一个需求, 查询的一条记录需要包含另一个表的多条记录,并且让多条记录成为一个字段组成最终的一条记录。比较难描述,看例子吧。...,一条记录包含产品 proId, ProName, ComName,的字段。...思路: 先写出不含成分表的查询语句, 然后将一个产品对应的多个成分合并成一个字段, 将合成的字段插入到一个语句中。...,那部分很重要的!...*如果要对合并的一方去重:嵌套DISTINCT即可 (SELECT group_concat( DISTINCT(c.comName) ) FROM componen WHERE componen.proId
在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。 合并DF Pandas 使用 .merge() 方法来执行合并。...让我们看看下面的例子,我们如何将单索引 DataFrame 与多索引 DataFrame 连接起来; import pandas as pd # a dictionary to convert...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...我对固定数量的行重复了十次实验,以消除任何随机性。下面是这十次试验中合并操作的平均运行时间。 上图描绘了操作所花费的时间(以毫秒为单位)。...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。
作者:阿南 整理:小五 如何在Pandas合并数据,大家肯定都不陌生。 作为一个初学者,我发现自己学了很多,却没有好好总结一下。...正好看到一位大佬 Yong Cui 总结的文章,我就按照他的方法,给大家分享用于Pandas中合并数据的 5 个最常用的函数。这样大家以后就可以了解它们的差异,并正确使用它们了。...pd.concat([df0, df1], axis=1) 默认情况下,当我们横向合并数据(沿列)时,Pandas其实是按照索引来连接的。...小结 总结一下,我们今天重新学习了 Pandas 中用于合并数据的 5 个最常用的函数。...他们分别是: concat[1]:按行和按列 合并数据; join[2]:使用索引按行合 并数据; merge[3]:按列合并数据,如数据库连接操作; combine[4]:按列合并数据,具有列间(相同列
来源:Deephub Imba本文约1400字,建议阅读15分钟在 Pandas 中有很多种方法可以进行DF的合并。本文将研究这些不同的方法,以及如何将它们执行速度的对比。...合并DF Pandas 使用 .merge() 方法来执行合并。...让我们看看下面的例子,我们如何将单索引 DataFrame 与多索引 DataFrame 连接起来; import pandas as pd # a dictionary to convert...Pandas 中的Merge Joins操作都可以针对指定的列进行合并操作(SQL中的join)那么他们的执行效率是否相同呢?...但是,Join的运行时间增加的速度远低于Merge。 如果需要处理大量数据,还是请使用join()进行操作。 编辑:王菁 校对:林亦霖
一、前言 前几天在Python最强王者群【wen】问了一个Pandas数据合并的问题,一起来看看吧。...请教:对两个exlce表示进行合并,df =pd.merge(df1,df2,on="用户账号",how='left'),但是由于系统数据的原因,df1表格的“用户账户”缺少最后两位数,而df2中的“用户账户...”是准确的,通过merge合并导致部门数据确实。...请教:对两个exlce表示进行合并,df =pd.merge(df1,df2,on="用户账号",how='left'),但是由于系统数据的原因,df1表格的“用户账户”缺少最后两位数,而df2中的“用户账户...”是准确的,通过merge合并导致部门数据确实。
import numpy as np import pandas as pd 一、元组作为一级索引 如果想产生如下图所示的学生成绩表: 因为 DataFrame 的行索引/列索引要求是不可变的,因此考虑使用元组做索引是很自然的选择...二、引入多级索引 (一)多级索引的创建 MultiIndex 对象是 Pandas 标准 Index 的子类,由它来表示多层索引业务。...1、基于列索引选取数据 # 基于列的第1层索引选取单列 scores['富强'] # 基于列的第1层索引选取多列,需要使用花式索引 scores[['富强','王亮']] 补充说明: 排序时默认按第一个字符的...# 基于列的第2层索引选取多列 scores.loc[:,(slice(None),['语文','数学'])] 其中的花式索引['语文','数学']表示选取 level 1 级列索引是语文和数学的两列...小结:无论基于行索引还是列索引选取数据,只要没指定最高级索引,则必须使用.loc[行索引,列索引]的形式。 2、基于行索引选取数据 基于行索引选取数据,必须使用.loc[]的形式。
建立索引也有不利的一面: 创建索引和维护索引要耗费时间,耗费的时间随着数据量的增加而增加; 索引占据物理空间。除了数据表占据物理空间以外,每一个索引都会占据一定的物理空间。...如果建立聚簇索引,那么需要的空间就会更大;如果非聚簇索引很多,一但聚簇索引改变,那么所有非聚簇索引也会跟这变; 当对表中的数据进行增加、删除和修改的视乎,索引也要动态的维护,一旦一个数据改变,并且改变的列比较多...在经常使用WHERE子句的列上建立索引,加快条件的判断速度。当增加索引时,会提高检索性能,加快条件的判断速度,但是会降低修改性能。 索引可以分为聚簇索引和非聚簇索引。...聚簇索引通过树形结构重排表中的数据来提高数据的访问速度,非聚簇索引则通过维护表中的数据指针来提高数据的索引。...当创建复合索引时,应该考虑以下规则 最多可以把16个列合并成一个单独的复合索引,构成符合索引列的总长度不能超过900字节,也就是说复合索引的长度不能太长; 在复合索引中,所有的列都必须来自同一个表中,不能跨表建立复合索引
今天我们来聊一下Pandas当中的数据集中带有多重索引的数据分析实战 通常我们接触比较多的是单层索引(左图),而多级索引也就意味着数据集当中的行索引有多个层级(右图),具体的如下图所示 AUTUMN...导入数据 我们先导入数据与pandas模块,源数据获取,公众号后台回复【多重索引】就能拿到 import pandas as pd ## 导入数据集 df = pd.read_csv('dataset.csv...') df.head() output 该数据集描述的是英国部分城市在2019年7月1日至7月4日期间的全天天气状况,我们先来看一下当前的数据集的行索引有哪些?...()方法,代码如下 df.reset_index() 下面我们就开始针对多层索引来对数据集进行一些分析的实战吧 第一层级的数据筛选 在pandas当中数据筛选的方法,一般我们是调用loc以及iloc方法...对于多层级索引的数据集而言,调用xs()方法能够更加方便地进行数据的筛选,例如我们想要筛选出日期是2019年7月4日的所有数据,代码如下 df.xs('2019-07-04', level='Date
3、从字典创建一个系列 字典(dict)可以作为输入传递,如果没有指定索引,则按排序顺序取得字典键以构造索引。如果传递了索引,索引中与标签对应的数据中的值将被拉出。 ?...5、序列的聚合统计 Series有很多的聚会函数,可以方便的统计最大值、求和、平均值等 ? 6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。...11、返回指定行列 pandas的DataFrame非常方便的提取数据框内的数据。 ? 12、条件查询 对各类数值型、文本型,单条件和多条件进行行选择 ? ?...15、分类汇总 可以按照指定的多列进行指定的多个运算进行汇总。 ? 16、透视表 透视表是pandas的一个强大的操作,大量的参数完全能满足你个性化的需求。 ?...19、数据合并 两个DataFrame的合并,pandas会自动按照索引对齐,可以指定两个DataFrame的对齐方式,如内连接外连接等,也可以指定对齐的索引列。 ?
这是 月小水长 的第 122 篇原创干货 距离上一篇 pandas 系列教程:数据分析利器 pandas 系列教程(四):对比 sql 学 pandas 发布已经过去大半年,近来才记起以前开了这样一个坑...,本篇是本系列 pandas 实战 tricks 的首篇,不求大而全,力争小而精。...大家可能经常会有这样的需求,有很多结构相同的 xlsx 或者 csv 文件,需要合并成一个总文件,并且在总文件中需要保存原来的子文件名,一个例子就是合并一个人所有微博下的所有评论,每条微博的所有评论对应一个...csv 文件,文件名就是该条微博的 id,合并之后新增一列保存微博 id,这样查看总文件的时候能直观看到某一条评论属于哪一条微博。...下面的代码就是干这个的,只需要把代码放到文件夹中运行即可,不需要指定有哪些子文件,以及有哪些列名,运行自动合并。
领取专属 10元无门槛券
手把手带您无忧上云