首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python-科学计算-pandas-03-两列相乘

今天讲讲pandas模块: DataFrame不同列相乘 Part 1:示例 已知一个DataFrame,有4列["quality_1", "measure_value", "up_tol", "down_tol..."] 对应的实物意义是: 对一个商品的四处位置测量其某一质量特性,并给出该四处的质量标准,上限和下限 本示例中,如何判断有几处位置其质量特性是不符合要求的,即measure_value列的值不在公差上下限范围内...,采用的算法如下图 希望生成3个新辅助计算列(前面2列上一篇文章已经介绍过) 列up_measure中每个值=列up_tol-列measure_value 列measure_down中每个值=列measure_value...Part 3:部分代码解读 df["mul"] = df["up_measure"].mul(df["measure_down"]),两列每行分别相乘相减,生成一个新的列 df_2 = df[df["mul...传送门 Python-科学计算-pandas-02-两列相减 Python-科学计算-pandas-01-df获取部分数据 本文为原创作品,欢迎分享

7.2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas 查找,丢弃列值唯一的列

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

    5.7K21

    pandas 提速 315 倍!

    ,我们现在要增加一个新的特征,但这个新的特征是基于一些时间条件生成的,根据时长(小时)而变化,如下: ?...pandas的.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。...下面代码中,lambda函数将两列数据传递给apply_tariff(): >>> @timeit(repeat=3, number=100) ... def apply_tariff_withapply...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。...在执行此操作之前,如果将date_time列设置为DataFrame的索引,会更方便: # 将date_time列设置为DataFrame的索引 df.set_index('date_time', inplace

    2.8K20

    Pandas中选择和过滤数据的终极指南

    Python pandas库提供了几种选择和过滤数据的方法,如loc、iloc、[]括号操作符、query、isin、between等等 本文将介绍使用pandas进行数据选择和过滤的基本技术和函数。...无论是需要提取特定的行或列,还是需要应用条件过滤,pandas都可以满足需求。 选择列 loc[]:根据标签选择行和列。...([]):基于列表过滤数据。...比如我们常用的 loc和iloc,有很多人还不清楚这两个的区别,其实它们很简单,在Pandas中前面带i的都是使用索引数值来访问的,例如 loc和iloc,at和iat,它们访问的效率是类似的,只不过是方法不一样...也就是说我们不知道列名的时候可以直接访问的第几行,第几列 这样解释应该可以很好理解这两个的区别了。最后如果你看以前(很久以前)的代码可能还会看到ix,它是先于iloc、和loc的。

    44110

    盘点使用Pandas解决问题:对比两列数据取最大值的5个方法

    一、前言 前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。...大概意思是说在DF中有2列数据,想每行取两列数据中的最大值,形成一个新列,该怎么写?最开始【iLost】自己使用了循环的方法写出了代码,当然是可行的,但是写的就比较难受了。...二、解决过程 这里给出5个方法,感谢大佬们的解答,一起来看看吧! 方法一:【月神】解答 其实这个题目的逻辑和思路也相对简单,但是对于Pandas不熟悉的小伙伴,接受起来就有点难了。...使用numpy结合pandas,代码如下: df['max4'] = np.where(df['cell1'] > df['cell2'],df['cell1'], df['cell2']) df...这篇文章基于粉丝提问,针对df中,想在每行取两列数据中的最大值,作为新的一列问题,给出了具体说明和演示,一共5个方法,顺利地帮助粉丝解决了问题,也帮助大家玩转Pandas,学习Python相关知识。

    4.3K30

    基于 Python 和 Pandas 的

    基于 Python 和 Pandas 的数据分析(1) Pandas 是 Python 的一个模块(module), 我们将用 Python 完成接下来的数据分析的学习....但是如果你不熟悉, 可以看下我的解释: 一个 dataframe 就很像是一个仅有行和列组成的电子表格. 现在开始, 我们可以使用 Pandas 以光速对数据集进行一系列的操作....Pandas 的性能非常强大, 非常值得学习. 如果你在使用 excel 或者其他电子表格处理大量的计算任务, 那么通常需要1分钟或者1小时去完成某些工作, Pandas 将改变这一切....() 这里, 我们创建了 start 和 end 两个变量, 它们都是 datatime 的对象....以上就是对 Pandas 一个简单快速的介绍. 在这个整个系列教程中, 我将会带到更多的Pandas 的基础知识, 还有一些对 dataframe 的操作.

    1.1K20

    解决KeyError: “Passing list-likes to .loc or [] with any missing labels is no long

    解决方法方法一:使用.isin()方法过滤标签一种解决方法是使用Pandas的​​.isin()​​方法来过滤标签,以确保只选择存在于DataFrame中的标签。...(valid_labels)]在上述示例中,我们使用列表推导式和​​.columns.isin()​​方法来过滤标签,仅选择存在于DataFrame列中的有效标签。...请注意,上述示例代码仅演示了如何使用两种解决方法来处理​​KeyError​​错误,并根据订单号列表筛选出相应的订单数据。实际应用中,你可以根据具体的需求和数据结构进行适当的修改和调整。...希望这个示例代码能够帮助你解决实际应用中遇到的类似问题。在Pandas中,通过索引器​​.loc​​​或​​[]​​可以用于查找标签。这些标签可以是行标签(索引)或列标签。...需要注意的是,在Pandas中,索引器​​.loc​​和​​[]​​可以实现更灵活的选择和筛选操作,还可以使用切片操作(如​​df.loc[:, 'column1':'column2']​​)来选择连续的行或列

    38510

    如何让pandas根据指定列的指进行partition

    ##解决方案 朴素想法 最朴素的想法就是遍历一遍原表的所有行,构建一个字典,字典的每个key是title,value是两个list。...不断将原有数据放入其中,然后到时候直接遍历keys,根据两个list构建pd,排序后导出。 更python的做法 朴素想法应该是够用的,但是不美观,不够pythonic,看着很别扭。...于是我搜索了How to partition DataFrame by column value in pandas?...boolean index stackoverflow里有人提问如何将离散数据进行二分类,把小于和大于某个值的数据分到两个DataFrame中。...groupby听着就很满足我的需求,它让我想起了SQL里面的同名功能。 df.groupby('ColumnName').groups可以显示所有的列中的元素。

    2.7K40

    Pandas中如何查找某列中最大的值?

    一、前言 前几天在Python白银交流群【上海新年人】问了一个Pandas数据提取的问题,问题如下:譬如我要查找某列中最大的值,如何做? 二、实现过程 这里他自己给了一个办法,而且顺便增加了难度。...print(df[df.点击 == df['点击'].max()]),方法确实是可以行得通的,也能顺利地解决自己的问题。...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一个Pandas数据提取的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【上海新年人】提出的问题,感谢【瑜亮老师】给出的思路,感谢【莫生气】、【添砖java】、【冯诚】等人参与学习交流。

    40110

    Pandas库的基础使用系列---获取行和列

    前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel(".....通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。...df.iloc[[2,5], :4]如果不看结果,只从代码上看是很难知道我们获取的是哪几列的数据。结尾今天的内容就是这些,下篇内容会和大家介绍一些和我们这两篇内容相关的一些小技巧或者说小练习敬请期待。

    63700

    Excel与pandas:使用applymap()创建复杂的计算列

    标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。

    3.9K10

    Pandas vs Spark:获取指定列的N种方式

    导读 本篇继续Pandas与Spark常用操作对比系列,针对常用到的获取指定列的多种实现做以对比。...无论是pandas的DataFrame还是spark.sql的DataFrame,获取指定一列是一种很常见的需求场景,获取指定列之后可以用于提取原数据的子集,也可以根据该列衍生其他列。...在两个计算框架下,都支持了多种实现获取指定列的方式,但具体实现还是有一定区别的。 01 pd.DataFrame获取指定列 在pd.DataFrame数据结构中,提供了多种获取单列的方式。...由于Pandas中提供了两种核心的数据结构:DataFrame和Series,其中DataFrame的任意一行和任意一列都是一个Series,所以某种意义上讲DataFrame可以看做是Series的容器或集合...03 小结 本文分别列举了Pandas和Spark.sql中DataFrame数据结构提取特定列的多种实现,其中Pandas中DataFrame提取一列既可用于得到单列的Series对象,也可用于得到一个只有单列的

    11.5K20
    领券