首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas中基于范围条件进行表连接

作为系列第15期,我们即将学习的是:在pandas中基于范围条件进行表连接。...表连接是我们日常开展数据分析过程中很常见的操作,在pandas中基于join()、merge()等方法,可以根据左右表连接依赖字段之间对应值是否相等,来实现常规的表连接。...但在有些情况下,我们可能需要基于一些“特殊”的条件匹配,来完成左右表之间的表连接操作,譬如对于下面的示例数据框demo_left和demo_right: 假如我们需要基于demo_left的left_id...等于demo_right的right_id,且demo_left的datetime与demo_right的datetime之间相差不超过7天,这样的条件来进行表连接,「通常的做法」是先根据left_id...和right_id进行连接,再在初步连接的结果表中基于left_id或right_id进行分组筛选运算,过滤掉时间差大于7天的记录: 而除了上面的方式以外,我们还可以基于之前的文章中给大家介绍过的pandas

24950

「Python实用秘技15」pandas中基于范围条件进行表连接

作为系列第15期,我们即将学习的是:在pandas中基于范围条件进行表连接。   ...表连接是我们日常开展数据分析过程中很常见的操作,在pandas中基于join()、merge()等方法,可以根据左右表连接依赖字段之间对应值是否相等,来实现常规的表连接。   ...等于demo_right的right_id,且demo_left的datetime与demo_right的datetime之间相差不超过7天,这样的条件来进行表连接,通常的做法是先根据left_id和right_id...进行连接,再在初步连接的结果表中基于left_id或right_id进行分组筛选运算,过滤掉时间差大于7天的记录:   而除了上面的方式以外,我们还可以基于之前的文章中给大家介绍过的pandas的功能拓展库...pyjanitor中的条件连接方法,直接基于范围比较进行连接,且该方式还支持numba加速运算:

23910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于SpringBoot+Mybatis plus+React.js实现条件选择切换搜索功能

    笔记/朱季谦 在写React前端逻辑时,经常遇到可以切换不同条件的列表查询功能,例如下边截图这样的,其实,这块代码基本都一个逻辑,可以一次性将实现过程记录下来,待以后再遇到时,直接根据笔记复用即可。...searchUser', { initialValue: "" })( 条件...getFieldDecorator('condition')属性值即“name”,也就是values.condition==“name”,就会跳转至values.name = values.searchValue,就意味着是搜索条件...public interface StudentMapper extends BaseMapper {} 这里使用了Mybatis plus的ORM框架,可以直接使用lambda表达式的搜索条件进行...,因为搜索条件搜索,故而,需要用like的模糊搜索,搜索条件是name+"%",没有两边都用"%",是因为若第一个模糊条件有索引的话,那么"%"+name+"%"将会造成索引失效。

    1.3K31

    懂Excel轻松入门Python数据分析包pandas(二十七):按条件选择,就是这么简单

    后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas numpy.where 方法 Excel 函数中有一个初学者都能马上学会的函数——IF 函数,而在 pandas...他能根据条件(true 或者 false) 返回不同的值。...60分算合格,C列打上"是",否则打上"否" 典型的根据条件选择某个值的需求 怎么解决 如此简单的需求,Excel 中一个 IF 函数轻松解决: IF 函数第一参数是条件,第二参数是当第一条件为 true...', 'sp1') df['res'] = np.where(df.成绩>=60,'是','否') df 行2:np.where 各个参数都能接受 pandas 的列(Series) ---- 性能优越...在 pandas 中其实也可以选择用 Python 的基本语法处理。

    79030

    【Mark一下】46个常用 Pandas 方法速查表

    中间的记录,行索引不包含2,列索引不包含1loc[m:n,[ '列名1', '列名2',…]]选择行索引在m到n间且列名为列名1、列名2的记录In: print(data2.loc[0:2,['col1...4 数据筛选和过滤 数据筛选和过滤是基于条件的数据选择,本章2.6.3提到的比较运算符都能用于数据的筛选和选择条件,不同的条件间的逻辑不能直接用and、or来实现且、或的逻辑,而是要用&和|实现。...常用方法如表4所示: 表4 Pandas常用数据筛选和过滤方法 方法用途示例示例说明单列单条件以单独列为基础选择符合条件的数据In: print(data2[data2['col3']==True])...Out: col1 col2 col3 0 2 a True 1 1 b True选择col3中值为True的所有记录多列单条件以所有的列为基础选择符合条件的数据...Out: col1 col2 col3 0 2 a True选择col2中值为a且col3值为True的记录使用“或”进行选择多个筛选条件,且多个条件的逻辑为“或”,用|表示

    4.9K20

    Pandas 2.2 中文官方教程和指南(一)

    要选择列,请在方括号[]之间使用列标签。 注意 如果您熟悉 Python dictionaries,选择单个列与基于键选择字典值非常相似。...要选择列,请在方括号[]之间使用列标签。 注意 如果你熟悉 Python dictionaries,选择单个列与基于键选择字典值非常相似。...要基于这样的函数过滤行,请在选择括号[]内使用条件函数。在这种情况下,选择括号内的条件titanic["Pclass"].isin([2, 3])检查Pclass列为 2 或 3 的行。...使用iloc选择特定行和/或列时,请使用表中的位置。 您可以基于loc/iloc分配新值给选择。 转到用户指南 用户指南页面提供了有关索引和选择数据的完整概述。...要基于此类函数过滤行,请在选择括号[]内使用条件函数。在这种情况下,选择括号内条件titanic["Pclass"].isin([2, 3])检查Pclass列数值为 2 或 3 的行。

    96410

    Pandas部分应掌握的重要知识点

    Pandas部分应掌握的重要知识点 import numpy as np import pandas as pd 一、DataFrame数据框的创建 1、直接基于二维数据创建(同时使用index和columns...(3) #按列标签选择多列,使用花式索引的形式 补充说明:使用.iloc或loc索引器的通用写法适用性更广泛,因此掌握通用写法是基本要求,在此基础上最好能掌握基于列标签的简化写法,因为这种写法也比较常见...: 方法1:先分组再选择列最后计算,推荐此种写法。...('team')['Q1'].mean() 方法2:先分组再计算最后选择列 #注意本例中,选择两列时使用了花式索引(如果只有一列,则无需使用花式索引) team.groupby('team').mean...,而不是满足条件的分组 ③ 其参数必须是函数,本例中lambda函数的形参x代表每个分组 ④ 当组对象存在多列时,filter的过滤条件要求显式的指定某一列 六、处理缺失值 1、Pandas中缺失值的表示

    4700

    如何在 Python 数据中灵活运用 Pandas 索引?

    参考链接: 用Pandas建立索引并选择数据 作者 | 周志鹏  责编 | 刘静  据不靠谱的数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用...基于位置(数字)的索引  先看一下索引的操作方式:  我们需要根据实际情况,填入对应的行参数和列参数。  场景一(行选取)  目标:选择“流量来源”等于“一级”的所有行。 ...基于名称(标签)的索引  为了建立起横向对比的体感,我们依然沿用上面三个场景。  场景一:选择一级渠道的所有行。 ...先看看均值各是多少:  再判断各指标列是否大于均值:  要三个条件同时满足,他们之间是一个“且”的关系(同时满足),在pandas中,要表示同时满足,各条件之间要用"&"符号连接,条件内部最好用括号区分...这两种索引方式,分别是基于位置(数字)的索引和基于名称(标签)的索引,关键在于把脑海中想要选取的行和列,映射到对应的行参数与列参数中去。

    1.7K00

    Pandas数据应用:库存管理

    对于初学者来说,可能会遇到不知道如何选择合适的数据读取方式的问题。对于Excel文件,使用pandas.read_excel()函数;对于CSV文件,使用pandas.read_csv()函数。...例如:# 假设有一列名为'date'的日期数据,格式不统一df['date'] = pd.to_datetime(df['date'])# 假设有一列名为'price'的价格数据,存在非数值字符df['...如果不处理缺失值,可能会导致错误的分析结果。可以使用df.isnull()来检测缺失值,使用df.dropna()删除含有缺失值的行或者df.fillna()填充缺失值。...,经常需要根据特定条件查询库存信息,如查询库存数量小于10的商品。...(三)SettingWithCopyWarning原因这个警告通常出现在链式赋值操作中,即在一个基于条件筛选后的数据上直接进行赋值操作。解决方案使用.loc[]方法进行明确的赋值操作。

    12110

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    import numpy as np import pandas as pd 1. Query 我们有时需要根据条件筛选数据,一个简单方法是query函数。...Where where函数用于指定条件的数据替换。如果不指定条件,则默认替换值为 NaN。 df['new_col'].where(df['new_col'] > 0, 0) ?...Loc 和 iloc Loc 和 iloc 函数用于选择行或者列。 loc:通过标签选择 iloc:通过位置选择 loc用于按标签选择数据。列的标签是列名。...Merge Merge()根据共同列中的值组合dataframe。考虑以下两个数据: ? 我们可以基于列中的共同值合并它们。设置合并条件的参数是“on”参数。 ?...df1和df2是基于column_a列中的共同值进行合并的,merge函数的how参数允许以不同的方式组合dataframe,如:“inner”、“outer”、“left”、“right”等。

    5.7K30

    Python中Pandas库的相关操作

    2.DataFrame(数据框):DataFrame是Pandas库中的二维表格数据结构,类似于电子表格或SQL中的表。它由行和列组成,每列可以包含不同的数据类型。...4.选择和过滤数据:Pandas提供了灵活的方式来选择、过滤和操作数据。可以使用标签、位置、条件等方法来选择特定的行和列。...7.数据排序和排名:Pandas提供了对数据进行排序和排名的功能,可以按照指定的列或条件对数据进行排序,并为每个元素分配排名。...8.数据的合并和连接:Pandas可以将多个DataFrame对象进行合并和连接,支持基于列或行的合并操作。...# 选择单列 df['Name'] # 选择多列 df[['Name', 'Age']] # 使用条件选择数据 df[df['Age'] > 30] # 使用逻辑运算符选择数据 df[(df['

    31130

    Python处理Excel数据-pandas篇

    目录 Python处理Excel数据-pandas篇 一、安装环境 1、打开以下文件夹(个人路径会有差异): 2、按住左Shift右键点击空白处,选择【在此处打开Powershell窗口(s)】 3...\Scripts Jetbrains全家桶1年46,售后保障稳定 2、按住左Shift右键点击空白处,选择【在此处打开Powershell窗口(s)】 3、输入以下代码通过Pip进行安装Pandas...) 2、查询 单条件查询 import pandas as pd path = 'c:/pandas/筛选.xlsx' data = pd.read_excel(path ,index_col='出生日期...') print(data.loc['1983-10-27','语文']) 多条件查询 import pandas as pd path = 'c:/pandas/筛选.xlsx' data = pd.read_excel...本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    4K60

    python单细胞学习笔记-day4

    touch day3.ipynb 正式开始上课 10:06 在jupyter lab 里面使用小环境里面的库 我这里用的vscode 连接服务器,使用 jupyter 插件,选择库就是页面的右上角,直接进行选择...") print(df2) # 设置第一列为行名 df2 = pd.read_csv("day3_preview/gene.csv",index_col=0) print(df2) 3.2 数据框提取列...() # series 转为list df1[['gene']] # 返回数据框 提取多列:在方括号里面写有列名组成的列表 3.3 提取行和列 .iloc:基于整数位置 loc:基于标签(行名或者列名...': ['up','up','down','down'], 'score': [5,3,-1,-3] }) print(df1) # 读取第一行, 不写逗号默认读取行 # 以下方式返回的都是series...print(df1.iloc[0]) print(df1.iloc[0,]) print(df1.iloc[0,:]) 提取多行多列: .loc() 按照行名列名取子集 .loc按照布尔值取子集:使用多个条件时

    5300

    软件测试|数据处理神器pandas教程(十五)

    图片Pandas去重函数:drop_duplicates()的数据清洗利器前言在数据处理和分析中,重复数据是一个常见的问题。为了确保数据的准确性和一致性,我们需要对数据进行去重操作。...基本的去重操作基于列的去重df.drop_duplicates(subset='column_name')通过指定subset参数为列名,可以对指定的列进行去重操作。...完全去重(所有列都相同)df.drop_duplicates()如果不指定subset参数,默认会比较所有列的值,只保留第一次出现的唯一行。...保留重复值df[df.duplicated(subset='column_name', keep=False)]通过结合duplicated()函数和布尔索引,我们可以选择保留所有重复值。...多列的去重df.drop_duplicates(subset=['column_name1', 'column_name2'])可以指定多个列,只有所有指定列的值都相同时,才视为重复基于条件的去重df.drop_duplicates

    20820

    5个例子介绍Pandas的merge并对比SQL中join

    两者都使用带标签的行和列的表格数据。 Pandas的merge函数根据公共列中的值组合dataframe。SQL中的join可以执行相同的操作。...这些操作非常有用,特别是当我们在表的不同数据中具有共同的数据列(即数据点)时。 ? pandas的merge图解 我创建了两个简单的dataframe和表,通过示例来说明合并和连接。 ?...示例1 第一个示例是基于id列中的共享值进行合并或连接。使用默认设置完成了这个任务,所以我们不需要调整任何参数。...import pandas as pd cust.merge(purc, on='id') ? Pandas的merge函数不会返回重复的列。...另一方面,如果我们选择两个表中的所有列(“*”),则在SQL join中id列是重复的。

    2K10

    pandas 提速 315 倍!

    ,我们现在要增加一个新的特征,但这个新的特征是基于一些时间条件生成的,根据时长(小时)而变化,如下: ?...pandas的.apply方法接受函数callables并沿DataFrame的轴(所有行或所有列)应用。...三、矢量化操作:使用.isin选择数据 什么是矢量化操作? 如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格:df ['energy_kwh'] * 28,类似这种。...那么这个特定的操作就是矢量化操作的一个例子,它是在pandas中执行的最快方法。 但是如何将条件计算应用为pandas中的矢量化运算?...一个技巧是:根据你的条件,选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下面代码中,我们将看到如何使用pandas的.isin()方法选择行,然后在矢量化操作中实现新特征的添加。

    2.8K20

    Python数据分析~~美食排行榜

    1.模块的导入和路径的选择 # 导入pandas模块,简称为pd import pandas as pd # 使用read_csv()函数 # TODO 读取路径"/Users/feifei/hotpot.csv...; # TODO 使用列索引和str.contains()函数 # 创建判断"店铺名称"列中的数据包含"鱼"的判断条件,并赋值给变量fishpot fishpot = df[df["店铺名称"].str.contains...str.contains()函数 # 创建判断"店铺名称"列中的数据包含"鱼"的判断条件,并赋值给变量fishpot fishpot = df[df["店铺名称"].str.contains("鱼")]...str.contains()函数 # 创建判断"店铺名称"列中的数据包含"鱼"的判断条件,并赋值给变量fishpot fishpot = df[df["店铺名称"].str.contains("鱼")]...("/Users/feifei/hotpot.csv") # 使用列索引和str.contains()函数 # 创建判断"店铺名称"列中的数据包含"鱼"的判断条件,并赋值给变量fishpot fishpot

    6210
    领券