首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在Pandas中更改列的数据类型【方法总结】

    先看一个非常简单的例子: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) 有什么方法可以将列转换为适当的类型...例如,上面的例子,如何将列2和3转为浮点数?有没有办法将数据转换为DataFrame格式时指定类型?或者是创建DataFrame,然后通过某种方法更改每列的类型?...在这种情况下,设置参数: df.apply(pd.to_numeric, errors='ignore') 然后该函数将被应用于整个DataFrame,可以转换为数字类型的列将被转换,而不能(例如,它们包含非数字字符串或日期...软转换——类型自动推断 版本0.21.0引入了infer_objects()方法,用于将具有对象数据类型的DataFrame的列转换为更具体的类型。...例如,用两列对象类型创建一个DataFrame,其中一个保存整数,另一个保存整数的字符串: >>> df = pd.DataFrame({'a': [7, 1, 5], 'b': ['3','2','1

    20.3K30

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    Dataframe对象的内部表示 在底层,pandas会按照数据类型将列分组形成数据块(blocks)。...这对我们原始dataframe的影响有限,这是由于它只包含很少的整型列。 同理,我们再对浮点型列进行相应处理: 我们可以看到所有的浮点型列都从float64转换为float32,内存用量减少50%。...余下的大部分优化将针对object类型进行。 在这之前,我们先来研究下与数值型相比,pandas如何存储字符串。...你可以看到这些字符串的大小在pandas的series中与在Python的单独字符串中是一样的。...总结 我们学习了pandas如何存储不同的数据类型,并利用学到的知识将我们的pandas dataframe的内存用量降低了近90%,仅仅只用了一点简单的技巧: 将数值型列降级到更高效的类型 将字符串列转换为类别类型

    8.7K50

    资源 | 23种Pandas核心操作,你需要过一遍吗?

    选自 Medium 作者:George Seif 机器之心编译 参与:思源 本文转自机器之心,转载需授权 Pandas 是一个 Python 软件库,它提供了大量能使我们快速便捷地处理数据的函数和方法...(7)列出所有列的名字 df.columns 基本数据处理 (8)删除缺失数据 df.dropna(axis=0, how='any') 返回一个 DataFrame,其中删除了包含任何 NaN 值的给定轴...(12)将目标类型转换为浮点型 pd.to_numeric(df["feature_name"], errors='coerce') 将目标类型转化为数值从而进一步执行计算,在这个案例中为字符串。...(13)将 DataFrame 转换为 NumPy 数组 df.as_matrix() (14)取 DataFrame 的前面「n」行 df.head(n) (15)通过特征名取数据 df.loc[feature_name...] DataFrame 操作 (16)对 DataFrame 使用函数 该函数将令 DataFrame 中「height」行的所有值乘上 2: df["height"].apply(*lambda* height

    2.9K20

    把表中的所有错误自动替换为空?这样做就算列数变了也不怕!

    但是这个表的列是动态的,下次多了一列这个方法就不行了,又得重新搞一遍。 大海:那咱们去改这个步骤的公式吧。 小勤:怎么改?...大海:首先,我们要得到表的所有列的列名,可以用函数Table.ColumnNames,如下图所示: 小勤:嗯,这个函数也简单。但是,怎么再给每个列名多带一个空值呢?...小勤:那怎么把两列组合在一起呢? 大海:还记得List.Zip函数吗?我把它叫“拉链”函数(Zip其实就是拉链的意思)。 小勤:嗯!就是一一对应的把两个列表的数据“拉“在一起!我知道了!...大海:其实长公式就是这样一步步“凑”成的,另外,注意你“更改的类型”步骤里的列是固定的哦。 小勤:嗯,这个我知道。后面我再按需要去掉这个步骤或做其他修改就是了。...而且,其他生成固定列参数的公式也可能可以参考这种思路去改。 大海:对的。这样做真是就算列数变了也不怕了。

    2.1K30

    读完本文,轻松玩转数据处理利器Pandas 1.0

    不过,Pandas 推荐用户合理使用这些数据类型,在未来的版本中也将改善特定类型运算的性能,比如正则表达式匹配(Regex Match)。...默认情况下,Pandas 不会自动将你的数据强制转换为这些类型。但你可以修改参数来使用新的数据类型。...字符串数据类型最大的用处是,你可以从数据帧中只选择字符串列,这样就可以更快地分析数据集中的文本。...df.select_dtypes("string") 在此之前,你只能通过指定名称来选择字符串类型列。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。

    3.5K10

    pandas 变量类型转换的 6 种方法

    pandas数据清洗 pandas骚操作系列 所有数据和代码可在我的GitHub获取: https://github.com/xiaoyusmd/PythonDataScience ---- 一、变量类型及转换...如果想要查看所有变量的数据类型,可以通过info快速查看,如下: df.info() >>pandas.core.frame.DataFrame'> RangeIndex: 6 entries...,s是一列数据,具有多种数据类型,现在想把它转换为数值类型。..., 其他类型一律忽视不转换, 包含时间类型 pd.to_numeric(s, errors='ignore') # 将时间字符串和bool类型强制转换为数字, 其他均转换为NaN pd.to_numeric...默认情况下,convert_dtypes将尝试将Series或DataFrame中的每个Series转换为支持的dtypes,它可以对Series和DataFrame都直接使用。

    4.9K20

    盘点66个Pandas函数,轻松搞定“数据清洗”!

    此外,isnull().any()会判断哪些”列”存在缺失值,isnull().sum()用于将列中为空的个数统计出来。...df["gender"].unique() df["gender"].nunique() 输出: 在数值数据操作中,apply()函数的功能是将一个自定义函数作用于DataFrame的行或者列;applymap...()函数的功能是将自定义函数作用于DataFrame的所有元素。...split 分割字符串,将一列扩展为多列 strip、rstrip、lstrip 去除空白符、换行符 findall 利用正则表达式,去字符串中匹配,返回查找结果的列表 extract、extractall...如果想直接筛选包含特定字符的字符串,可以使用contains()这个方法。 例如,筛选户籍地址列中包含“黑龙江”这个字符的所有行。

    3.8K11

    pandas

    1961/1/8 0:00:00 4.pandas中series与DataFrame区别 Series是带索引的一维数组 Series对象的两个重要属性是:index(索引)和value(数据值)...原因: writer.save()接口已经私有化,close()里面有save()会自动调用,将writer.save()替换为writer.close()即可 更细致的操作: 可以添加更多的参数,比如...列中的日期转换为没有时分秒的日期 df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame...对象,将列表作为一列数据 df = pd.DataFrame(data, columns=['姓名']) df_transposed = df.T # 保存为行 # 将 DataFrame

    13010

    如何将字符串中的子字符串替换为给定的字符串?php strtr()函数怎么用?

    如何将字符串中的子字符串替换为给定的字符串? strtr()函数是PHP中的内置函数,用于将字符串中的子字符串替换为给定的字符串。...该函数返回已转换的字符串;如果from和to参数的长度不同,则会被格式化为最短的长度;如果array参数包含一个空字符串的键名,则返回FALSE。 php strtr()函数怎么用?...规定要转换的字符串。 ● from:必需(除非使用数组)。规定要改变的字符(或子字符串)。 ● to:必需(除非使用数组)。规定要改变为的字符(或字符串)。...一个数组,其中的键名是原始字符,键值是目标字符。 返回值 返回已转换的字符串。...如果 from 和 to 参数的长度不同,则会被格式化为最短的长度;如果 array 参数包含一个空字符串("")的键名,则返回 FALSE。

    5.2K70

    python数据科学系列:pandas入门详细教程

    二者之间主要区别是: 从数据结构上看: numpy的核心数据结构是ndarray,支持任意维数的数组,但要求单个数组内所有数据是同质的,即类型必须相同;而pandas的核心数据结构是series和dataframe...前者是将已有的一列信息设置为标签列,而后者是将原标签列归为数据,并重置为默认数字标签 set_axis,设置标签列,一次只能设置一列信息,与rename功能相近,但接收参数为一个序列更改全部标签列信息(...例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...是在numpy的基础上实现的,所以numpy的常用数值计算操作在pandas中也适用: 通函数ufunc,即可以像操作标量一样对series或dataframe中的所有元素执行同一操作,这与numpy...时间类型向量化操作,如字符串一样,在pandas中另一个得到"优待"的数据类型是时间类型,正如字符串列可用str属性调用字符串接口一样,时间类型列可用dt属性调用相应接口,这在处理时间类型时会十分有效。

    15K20

    Pandas 25 式

    目录 查看 pandas 及其支持项的版本 创建 DataFrame 重命名列 反转行序 反转列序 按数据类型选择列 把字符串转换为数值 优化 DataFrame 大小 用多个文件建立 DataFrame...操控缺失值 把字符串分割为多列 把 Series 里的列表转换为 DataFrame 用多个函数聚合 用一个 DataFrame 合并聚合的输出结果 选择行与列 重塑多重索引 Series 创建透视表...这里要注意的是,字符串里的字符数量必须与 DataFrame 的列数一致。 3. 重命名列 ? 用点(.)选择 pandas 里的列写起来比较容易,但列名里有空格,就没法这样操作了。...用 dropna() 删除列里的所有缺失值。 ? 只想删除列中缺失值高于 10% 的缺失值,可以设置 dropna() 里的阈值,即 threshold. ? 16....年龄列有 1 位小数,票价列有 4 位小数,如何将这两列显示的小数位数标准化? 用以下代码让这两列只显示 2 位小数。 ? 第一个参数是要设置的选项名称,第二个参数是 Python 的字符串格式。

    8.4K00
    领券