导读:Pandas是日常数据分析师使用最多的分析和处理库之一,其中提供了大量方便实用的数据结构和方法。但在使用初期,很多人会不知道: 1.它能提供哪些功能? 2.我的需求应该用哪个方法?...2 1 1选取行索引在[0:2)列索引在[0:1)中间的记录,行索引不包含2,列索引不包含1loc[m:n,[ '列名1', '列名2',…]]选择行索引在m到n间且列名为列名1、列名2的记录...[0:2)之间,列名为'col1'和'col2'的记录,行索引不包含2 提示 如果选择特定索引的数据,直接写索引值即可。...常用方法如表4所示: 表4 Pandas常用数据筛选和过滤方法 方法用途示例示例说明单列单条件以单独列为基础选择符合条件的数据In: print(data2[data2['col3']==True])...具体实现如表6所示: 表6 Pandas常用数据合并和匹配方法 方法用途示例示例说明merge关联并匹配两个数据框In: print(data2.merge(data1,on='col1',how='
就用得最多,毕竟在 Excel 中进行数据统计是常见需求。...今天我们来看看在 pandas 中如何做到条件统计。...xxxifs 类函数即可 在 pandas ,不会有啥条件统计函数的,因为这就是先筛选,再统计: - 行2:得到 性别 列是女性的 bool 列 - 行3:df[cond] 就是女性的记录,简单通过...,不区分大小写 pandas 用于文本匹配的还有 match 方法,此系列文章不再深入讲解了。...更多高级应用方法,请关注 pandas 专栏 [带你玩转Python数据处理—pandas] 总结 本文重点: - 构造 bool 列,是核心知识点 - Series.str.contains 用于文本规则条件匹配
就用得最多,毕竟在 Excel 中进行数据统计是常见需求。...今天我们来看看在 pandas 中如何做到条件统计。...xxxifs 类函数即可 在 pandas ,不会有啥条件统计函数的,因为这就是先筛选,再统计: - 行2:得到 性别 列是女性的 bool 列 - 行3:df[cond] 就是女性的记录,简单通过...fare.mean() 恰好反映"票价的平均" 同样,简单分组即可一次获得所有分组的统计信息: - 按 sex 分组,求 票价 的 平均 需求3:非常规匹配 上面的条件都是完全符合,有时候我们需要统计有包含关系的条件...,不区分大小写 pandas 用于文本匹配的还有 match 方法,此系列文章不再深入讲解了。
作者:程恒超 来源:超哥的杂货铺 作为一名数据分析师,平常用的最多的工具是SQL(包括MySQL和Hive SQL等)。...如果只想查看前10行数据呢。pandas可以调用head(n)方法,n是行数。MySQL可以使用limit n,n同样表示行数。(点击图片可以查看大图) ?...指定条件时,可以指定等值条件,也可以使用不等值条件,如大于小于等。但一定要注意数据类型。例如如果uid是字符串类型,就需要将10003加引号,这里是整数类型所以不用加。...11.更新和删除操作 更新和删除都是要改变原有数据的操作。对于更新操作,操作的逻辑是:先选出需要更新的目标行,再进行更新。...删除操作可以细分为删除行的操作和删除列的操作。对于删除行操作,pandas的删除行可以转换为选择不符合条件进行操作。SQL需要使用delete关键字。
如果你不基于一些条件,而是可以在一行代码中将所有电力消耗数据应用于该价格(df ['energy_kwh'] * 28),类似这种。...这个特定的操作就是矢量化操作的一个例子,它是在Pandas中执行的最快方法。 但是如何将条件计算应用为Pandas中的矢量化运算?...一个技巧是根据你的条件选择和分组DataFrame,然后对每个选定的组应用矢量化操作。 在下一个示例中,你将看到如何使用Pandas的.isin()方法选择行,然后在向量化操作中实现上面新特征的添加。...然后,当你将这些布尔数组传递给DataFrame的.loc索引器时,你将获得一个仅包含与这些小时匹配的行的DataFrame切片。在那之后,仅仅是将切片乘以适当的费率,这是一种快速的矢量化操作。...这与我们上面的循环操作相比如何?首先,你可能会注意到不再需要apply_tariff(),因为所有条件逻辑都应用于行的选择。因此,你必须编写的代码行和调用的Python代码会大大减少。
2、一些重要的Pandas read_excel选项 ? 如果默认使用本地文件的路径,用“\”表示,接受用“/”表示,更改斜杠可以将文件添加到Python文件所在的文件夹中。...Pandas有很多我们可以使用的功能,接下来将使用其中一些来看下我们的数据集。 1、从“头”到“脚” 查看第一行或最后五行。默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ?...Python提供了许多不同的方法来对DataFrame进行分割,我们将使用它们中的几个来了解它是如何工作的。...有四种合并选项: left——使用左侧DataFrame中的共享列并匹配右侧DataFrame,N/A为NaN; right——使用右侧DataFrame中的共享列并匹配左侧DataFrame,N/A为...NaN; inner——仅显示两个共享列重叠的数据。
作为一名数据分析师,平常用的最多的工具是SQL(包括MySQL和Hive SQL等)。...如果只想查看前10行数据呢。pandas可以调用head(n)方法,n是行数。MySQL可以使用limit n,n同样表示行数。(点击图片可以查看大图) ?...指定条件时,可以指定等值条件,也可以使用不等值条件,如大于小于等。但一定要注意数据类型。例如如果uid是字符串类型,就需要将10003加引号,这里是整数类型所以不用加。...11.更新和删除操作 更新和删除都是要改变原有数据的操作。对于更新操作,操作的逻辑是:先选出需要更新的目标行,再进行更新。...删除操作可以细分为删除行的操作和删除列的操作。对于删除行操作,pandas的删除行可以转换为选择不符合条件进行操作。SQL需要使用delete关键字。
conda create -c conda-forge -n name_of_my_env python pandas 这将创建一个仅安装了 Python 和 pandas 的最小环境。...如果是类似“/usr/bin/python”的东西,则表示您正在使用系统中的 Python,这是不推荐的。 强烈建议使用 conda,以便快速安装和更新软件包和依赖项。...如果类似于“/usr/bin/python”,则您正在使用系统中的 Python,这是不推荐的。 强烈建议使用conda进行快速安装和包和依赖项更新。...如果显示类似“/usr/bin/python”的内容,则表示您正在使用系统中的 Python,这是不推荐的。 强烈建议使用conda,以快速安装和更新包和依赖项。...注意 对最后 N 行感兴趣吗?pandas 还提供了tail()方法。例如,titanic.tail(10)将返回 DataFrame 的最后 10 行。
为了更好地掌握数据科学必备库Pandas的基本使用,本文通过精灵宝可梦的数据集实战,我们一起过一遍Pandas的基本操作,文中的代码都附有注释,并给出了结果的配图。 话不多说,我们开始吧!...导入pandas库,并读取csv文件 import pandas as pd df=pd.read_csv('pokemon/Pokemon.csv') 查看DataFrame信息 df.info()...# 数据类型,内存消耗等信息 df.describe() # 统计特征,均值方差等 查看DataFrame的前几行以及后几行 pd.head(n=5) # 可以添加参数n,表示显示几行 pd.tail...df['Sp.Atk'].idxmax() # Sp.Atk最高的行索引 df.sort_values('HP',ascending=False).head(3) # HP最多的前三条数据 df...去重 df.drop_duplicates(['Type1'],keep='first') # 去除相同的Type1的数据,仅保留第一个 数据条件查询 df[df['Name']=='Squirtle'
最多可以指定32列。使用最左匹配原则。...在PostgreSQL当前支持的索引类型中,只有B-tree可以产生排序的输出,当ORDER BY与LIMIT n组合:显式排序将必须处理所有数据以识别前n行,但如果存在与ORDER BY匹配的索引,则可以直接检索前...n行,而不扫描其余部分。...PostgreSQL可以为表达式的结果创建索引,但是该索引维护代价太大,因为每当插入或者更新时,表达式都需要重新计算。...PostgreSQL支持仅索引扫描,当要查询的目标列都在索引中时,直接使用索引中的键值进行返回,不需要回表操作。 技术永无止境,加油吧。 Catch.jpg
0 : len; } }; 复杂度分析: 时间复杂度:O(n),其中n为数组的长度。每个元素在扩展和收缩窗口的过程中最多只会被访问两次。 空间复杂度:O(1),仅使用了常数个额外空间。 2....-1 : nums.size() - ret; } }; 复杂度分析: 时间复杂度:O(n),数组的每个元素最多访问两次。 空间复杂度:O(1),仅使用了常数个额外空间。 5....水果成篮 (LeetCode 904) 题目描述: 在一条树木组成的行上,有 n 棵树,每棵树上都挂着不同种类的水果。你只有两个篮子,每个篮子只能装一种类型的水果。...结果更新:每次调整窗口后,计算当前窗口的长度,并更新 max_fruits,以记录目前为止可以收集的最多水果数量。 返回结果:遍历整个数组后,max_fruits 中记录的就是最多的连续水果数量。...如果缩小后的窗口仍然包含 t 中的所有字符,则更新最小子串的起始位置和长度。 判断结果:如果最终找到了符合条件的子串,返回该子串,否则返回空字符串。 总结 上述算法都使用了滑动窗口技术来解决问题。
Pandas 的read_csv函数比该模块提供了性能和功能上的强大提升。 更多 head方法接受单个参数n,该参数控制显示的行数。 同样,tail方法返回最后的n行。...如果在创建数据帧时未显式提供索引,则默认情况下,将创建RangeIndex,其标签为从 0 到n-1的整数,其中 n 是行数。...逗号左侧的选择始终根据行索引选择行。 逗号右边的选择始终根据列索引选择列。 不必同时选择行和列。 步骤 2 显示了如何选择所有行和列的子集。 冒号表示一个切片对象,该对象仅返回该维度的所有值。...选择行的快捷方式仅包含索引运算符本身。 这只是显示 Pandas 其他功能的捷径,但索引运算符的主要功能实际上是选择数据帧的列。 如果要选择行,则最好使用.iloc或.loc,因为它们是明确的。...如果回头看步骤 1 的数据帧输出,您将看到最后一行缺少duration的值。 为此,步骤 2 中的布尔条件返回False。
,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值 ?...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...广播机制,即当维度或形状不匹配时,会按一定条件广播后计算。由于pandas是带标签的数组,所以在广播过程中会自动按标签匹配进行广播,而非类似numpy那种纯粹按顺序进行广播。...,默认是行),仅接收函数作为参数 ?...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。
而执行器是如何关联这些表的数据的呢?它会先取出第一个表的第一行记录,然后去匹配下一个表的所有行,接着再匹配下一个表,知直到所有的表匹配完毕后,取出各个表需要查询的字段。...const当前查询最多只有一个匹配行,并且使用常量匹配主键或者唯一索引时,类型是 const,const 读取速度非常快,因为他们只被读取 1 次。...N 的值可以是 0、1 或 allSelect tables optimized away优化器确定了最多返回 1 行。例如像 min(c1) 这种只需要查索引树最左端的记录就能拿到结果。...Using index仅使用索引树中的信息从表中检索列信息,而无需执行额外的查找来读取实际行。Using index conditionwhere 中存在索引列,但未使用到索引列。...通过访问索引组来判断是否需要回表查询所有行。这个叫做索引条件下推。
引言:本文为《Python for Excel》中第5章Chapter 5:Data Analysis with pandas的部分内容,主要讲解了pandas如何将数据组合,即concat、join和...左联接(leftjoin)获取左数据框架df1中的所有行,并在索引上匹配右数据框架df2中的行,在df2没有匹配行的地方,pandas将填充NaN。左联接对应于Excel中的VLOOKUP情况。...右联接(rightjoin)获取右表df2中的所有行,并将它们与df1中索引相同的行相匹配。...表5-5.联接类型 让我们看看它们在实践中是如何运作的,将图5-3中的示例付诸实践: 如果要在一个或多个数据框架列上联接而不是依赖索引,那么使用“合并”(merge)而不是“联接”(join)。...merge接受on参数以提供一个或多个列作为联接条件(joincondition):这些列必须存在于两个数据框架中,用于匹配行: 由于join和merge接受相当多的可选参数以适应更复杂的场景,因此你可以查看官方文档以了解关于它们的更多信息
_name[m:n] 访问行的特殊方法 访问 m 行到 n 行:DataFrame[:][m:n] DataFrame.head/tail():访问前/后五行 整数标签的特殊情况 为了防止计算机不知道用户输入的索引是基于位置还是基于标签的...,pd 整数标签的索引是基于标签的,也就是说我们不能像列表一样使用 DataFrame[-1]进行访问(仅针对整数作为索引的情况) 切片访问方法 DataFrame.loc[]访问 访问时主要采用[行索引或者条件...,‘column1_name’]的方式对 DataFrame 进行切片,对行的指定要使用索引或者条件,对列的索引必须使用列名称,如果有多列,则还需要借助[]将列名称括起来。...使用 loc 传入的行索引名称如果为一个区间,则前后均为闭区间 #条件表达式切片用法 print('条件表达式使用字典方式,xy123中xn', xy123.loc[xy123[...、记录数量最多的类的记录数量。
这个项目从基础到进阶,可以检验你有多么了解 pandas。 我会挑选一些题目,并且提供比原题库更多的解决方法以及更详尽的解析。 计划每天更新一期,希望各位小伙伴先自行思考,再查看答案。...如果对你有帮助,记得转发推荐给你的好友! 上期文章:pandas每天一题-题目1、2、3 后台回复"数据",可以下载本题数据集 如下数据: 数据描述: 此数据是订单明细表。...nlargest(1, 'quantity', keep='all') ) 行2:按名字分组 行3:汇总数量 行4:取最多数量的。...df.nlargest ---- 解法2 如果最多只有一笔,我们也可以使用: ( df.groupby(['item_name']) .agg({'quantity': sum,})...因为是倒序排序,这个值就是最大值 行9:把等于最大值的行保留即可 这种方式比较繁琐,如果只是求n大记录,建议使用 nlargest 推荐阅读: python 方法太多了,怎么记住?
VLOOKUP函数大家应该都很熟悉吧,它可以帮我们根据指定的条件快速查找匹配出相应的结果,通常被用于核对、匹配多个表格之间的数据。与数据透视表,并称为数据er最常用的两大Excel功能。...那我们今天就聊聊,如何Python写Excel中的“Vlookup”函数?...一般是匹配条件容易记混,如果为FALSE或0,则返回精确匹配,如果找不到,则返回错误值 #N/A。如果 range_lookup 为TRUE或1,函数 VLOOKUP 将查找近似匹配值。...然后通过for循环语句,循环第2行到最后一行,针对每一个B列单元格,我们都写入上述vlookup公式。最后记得保存一下即可。...Pandas 在这数据爆炸的时代,我们无时无刻不在和数据打交道。
领取专属 10元无门槛券
手把手带您无忧上云