Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。...在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。...语法 要创建一个空的数据帧并向其追加行和列,您需要遵循以下语法 - # syntax for creating an empty dataframe df = pd.DataFrame() # syntax...Pandas.Series 方法可用于从列表创建系列。列值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例中,我们创建了一个空数据帧。... Pandas 库创建一个空数据帧以及如何向其追加行和列。
优化的数据结构:Pandas提供了几种高效的数据结构,如DataFrame和Series,它们是为了优化数值计算和数据操作而设计的。这些数据结构在内存中以连续块的方式存储数据,有助于提高数据访问速度。...DataFrame的一列就是Series,Series可以转化为DataFrame,调用方法函数to_frame()即可 Series 是 pandas 中的一种数据结构,可以看作是带有标签的一维数组。...它由两部分组成:索引(Index) 和 值(Values)。 索引(Index): 索引是用于标识每个元素的标签,可以是整数、字符串、日期等类型的数据。...具体来说,map()函数可以接受一个字典或一个函数作为参数,然后根据这个字典或函数对 Series 中的每个元素进行映射或转换,生成一个新的 Series,并返回该 Series。...如果传入的是一个字典,则 map() 函数将会使用字典中键对应的值来替换 Series 中的元素。如果传入的是一个函数,则 map() 函数将会使用该函数对 Series 中的每个元素进行转换。
qcut:和cut作用一样,不过它是将数值等间距分割 crosstab:创建交叉表,用于计算两个或多个因子之间的频率 join:通过索引合并两个dataframe stack: 将数据框的列“堆叠”为一个层次化的...:对每个分组应用自定义的聚合函数 transform:对每个分组应用转换函数,返回与原始数据形状相同的结果 rank:计算元素在每个分组中的排名 filter:根据分组的某些属性筛选数据 sum:计算分组的总和...mean:计算分组的平均值 median:计算分组的中位数 min和 max:计算分组的最小值和最大值 count:计算分组中非NA值的数量 size:计算分组的大小 std和 var:计算分组的标准差和方差...describe:生成分组的描述性统计摘要 first和 last:获取分组中的第一个和最后一个元素 nunique:计算分组中唯一值的数量 cumsum、cummin、cummax、cumprod:...astype: 将一列的数据类型转换为指定类型 sort_values: 对数据框按照指定列进行排序 rename: 对列或行进行重命名 drop: 删除指定的列或行 数据可视化 pandas.DataFrame.plot.area
而 NumPy 更适合处理统一的数值数组数据。 Pandas 数据结构 DataFrame 是 Pandas 最常用也是非常重要的一个对象,它是一个二维的数据结构,数据以行和列的表格方式排列。...python 中可以作为分组键的类型: 列名 和分组数据等长的数组或者列表 一个指明分组名称和分组值关系的字典或者 series A function to be invoked on the axis...缺失值处理 缺失值识别: pandas.DataFrame.isnull()和 pandas.DataFrame.notnull()方法识别缺失值和非缺失值,两个方法会返回一个与输入同型的布尔df。...交叉表是一种特殊的数据透视表,它仅指定一个特征作为行分组键,一个特征作为列分组键,是为交叉的意思。...将样本从小到大进行排列,按照样本位置将数据划分为位置间隔相等的区间。位置间隔相同意味着样本出现的频数相同。 获得每个区间的第一个和最后一个元素的值,两者的差值即为与该位置区间对应的元素取值区间。
1)、heapq.nlargest(n, iterable[, key]) 从迭代器对象iterable中返回前n个最大的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中...2)、heapq.nsmallest(n, iterable[, key]) 从迭代器对象iterable中返回前n个最小的元素列表,其中关键字参数key用于匹配是字典对象的iterable,用于更复杂的数据结构中...关于第三个参数的应用,我们来看一个例子就明白了。...现在有几个需要注意的地方: 1)heapq.heapify(iterable):可以将一个列表转换成heapq 2)在Top N问题中,如果N=1,则直接用max(iterable)/min(iterable...3)如果N很大,接近集合元素,则为了提高效率,采用sort+切片的方式会更好,如: 求最大的N个元素:sorted(iterable, key=key, reverse=True)[:N] 求最小的N个元素
整篇总结,在详尽且通俗易懂的基础上,我力求使其有很强的条理性和逻辑性,所以制作了思维导图,对于每一个值得深究的函数用法,我也会附上官方链接,方便大家继续深入学习。...文章中的所有代码都会有讲解和注释,绝大部分也都会配有运行结果,酱紫的话,整篇总结篇幅量自然不小,所以我分成了上下两篇,这里是下篇。 《超全的pandas数据分析常用函数总结:上篇》 5....6.2.5 用iloc取连续的多行和多列 提取第3行到第6行,第4列到第5列的值,取得是行和列交叉点的位置。 data.iloc[2:6,3:5] 输出结果: ?...6.2.6 用iloc取不连续的多行和多列 提取第3行和第6行,第4列和第5列的交叉值 data.iloc[[2,6],[3,5]] 输出结果: ?...数据统计 9.1 数据采样 pandas.DataFrame.sample(n = None,replace = False,weights = None) n:样本数 replace:样本有无更换(有无放回
(二)mean()方法 比较 DataFrame 中列'Q1'的每个元素是否大于或等于'Q1'列的平均值: df['Q1']>=df['Q1'].mean() 它的返回结果将是一个布尔类型的 Series...中倒数第四列及其后面的所有列的列名: df.columns[-4:] df.columns返回一个包含 DataFrame 中所有列名的 Index 对象。...3、返回一个包含每个分组中 ‘Q1’ 和 ‘Q4’ 列的最大值: df.groupby('team')['Q1','Q4'].apply(max) 对 DataFrame df根据 ‘team’ 列进行分组...,然后对每个分组中的 ‘Q1’ 和 ‘Q4’ 列应用了max()函数,以找到每个组中 ‘Q1’ 和 ‘Q4’ 列的最大值。...如果 ‘Q1’ 和 ‘Q4’ 列中包含数值数据,那么该操作将返回一个包含每个分组中 ‘Q1’ 和 ‘Q4’ 列的最大值的 Series 对象。
整篇总结,在详尽且通俗易懂的基础上,我力求使其有很强的条理性和逻辑性,所以制作了思维导图,对于每一个值得深究的函数用法,我也会附上官方链接,方便大家继续深入学习。...文章中的所有代码都会有讲解和注释,绝大部分也都会配有运行结果,酱紫的话,整篇总结篇幅量自然不小,所以我分成了上下两篇,这里是下篇。 《超全的pandas数据分析常用函数总结:上篇》 5....6.2.5 用iloc取连续的多行和多列 提取第3行到第6行,第4列到第5列的值,取得是行和列交叉点的位置。 data.iloc[2:6,3:5] 输出结果: ?...6.2.6 用iloc取不连续的多行和多列 提取第3行和第6行,第4列和第5列的交叉值 data.iloc[[2,6],[3,5]] 输出结果: ?...数据统计 9.1 数据采样 pandas.DataFrame.sample(n = None,replace = False,weights = None) n:样本数 replace:样本有无更换(
result[i][j] = arr[3 - j - 1][i]; printf("%d\t", result[i][j]); } printf("\n"...); } return 1; } 最近发东西比较频繁,因为我的图床写好了,上传图片方便多了。
小闫语录: 一个态度端正,对事认真的人,即使能力欠佳,最后的成果肯定不会太差。一个能力突出,但是态度不端,眼高手低的人,即使完成了任务,效果也未必见好。用人,做人,态度须为第一。 ?...Pandas 1.Pandas介绍 1.1Pandas与Numpy的不同? 答:Numpy是一个科学计算库,用于计算,提高计算效率。..., axis=0) func:自定义函数 axis=0:默认是列,axis=1为行进行运算 例如:我们定义一个函数,对列的最大值与最小值做差。...5.2hdf文件 HDF5文件的读取和存储需要指定一个键,值为要存储的DataFrame 读取read_hdf: pandas.read_hdf(path_or_buf,key =None,** kwargs...答:把每个类别生成一个布尔列,这些列中只有一列可以为这个样本取值为1。其又被称为热编码。
DataFrames 数据框架的剖析 Pandas的主要数据结构是一个DataFrame。它捆绑了一个二维数组,并为其行和列加上标签。...创建一个DataFrame 用已经存储在内存中的数据构建一个DataFrame竟是如此的超凡脱俗,以至于它可以转换你输入的任何类型的数据: 第一种情况,没有行标签,Pandas用连续的整数来标注行。...就像1:1的关系一样,要在Pandas中连接一对1:n的相关表,你有两个选择。...首先,你可以只用一个名字来指定要分组的列,如下图所示: 如果没有as_index=False,Pandas会把进行分组的那一列作为索引列。...在上面的例子中,所有的值都是存在的,但它不是必须的: 对数值进行分组,然后对结果进行透视的做法非常普遍,以至于groupby和pivot已经被捆绑在一起,成为一个专门的函数(和一个相应的DataFrame
基于列值重塑数据(生成一个“透视”表)。使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...下面通过一个例子说明分组聚合的过程: 掌握分组与聚合的过程,可以熟练地groupby()、agg()、transfrom()和apply()方法实现分组与聚合操作 2.3.1 分组操作groupby...使用pandas的groupby()方法拆分数据后会返回一个GroupBy类的对象,该对象是一个可迭代对象,它里面包含了每个分组的具体信息,但无法直接被显示。...DataFrameGroupBy和SeriesGroupBy都是GroupBy的子类。 若DataFrame类对象调用groupby()方法,会返回一个DataFrameGroupBy类的对象。...: # 根据列表对df_obj进行分组,列表中相同元素对应的行会归为一组 groupby_obj = df_obj.groupby(by=['A', 'A', 'B', 'B', 'A', 'B'])
DataFrame:一个二维表格,类似于电子表格或数据库中的表,具有行和列。 Series:一个一维数组,类似于表格中的一列数据。 2.2 什么是 xlrd?...DataFrame 是 pandas 中的核心数据结构之一,它是一个二维的表格,类似于 Excel 表格。每个 DataFrame 都有行索引和列标签。...Series 是 pandas 中的一维数据结构,类似于 Excel 中的一列。每个 Series 都有一个索引和一组数据。...'Name' 来提取 DataFrame 中的某一列,返回一个 Series。...groupby 是 pandas 中的一个强大函数,常用于分组统计。
一、Pandas Series Series是一个一维的数组对象,它包含一个值序列和一个对应的索引序列。...DataFrame既有行索引,也有列索引,它可以被看做为一个共享相同索引的Series的字典。它的列的类型可能不同,我们也可以把Dataframe想象成一个电子表格或SQL表。....png] 2.1 从列表创建DataFrame 从列表中很方便的创建一个DataFrame,默认行列索引从0开始。...] 2.9 pandas Dataframe分组统计 可以按照指定的多列进行指定的多个运算进行汇总统计。...pandas Dataframe的apply变换函数 这是pandas的一个强大的函数,可以针对每一个记录进行单值运算,无需手动写循环进行处理。
df.sort_values()将新的dataframe按照月份和年份进行分组.新建一个数组,准备存放计算出来的同期增长比。...循环各个项目的字段 B4:按照循环的这个字段进行分组 B5:新建一个表,该字段名作为subject字段的值,该字段分组中的值作为mark字段,分组中的成员数作为count字段 B6:将每个项目的结果汇总到...A3中 A7: A.pivot(g,…;F,V;Ni:N'i,…),以字段/表达式g为组,将每组中的以F和V为字段列的数据转换成以Ni和N'i为字段列的数据,以实现行和列的转换。...循环除第一个字段的所有字段 df.groupby()按照该字段进行分组,统计分组中的成员数量,同时取当前的col这个字段和name字段。...另外python中的merge函数不支持差集计算(或许其他函数支持),造成在第四例中特别麻烦。python pandas的dataframe结构是按列进行存储的,按行循环时就显得特别麻烦。
所以在这里我们汇总一下 Pandas官方文档 中比较常用的函数和方法,以方便大家记忆。同时,我们提供一个PDF版本,方便大家打印。 ...(n):查看DataFrame对象的最后n行 df.shape():查看行数和列数 http:// df.info() :查看索引、数据类型和内存信息 df.describe():查看数值型列的汇总统计...():检查DataFrame对象中的空值,并返回一个Boolean数组 pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna():删除所有包含空值的行...([col1,col2]):返回一个按多列进行分组的Groupby对象 df.groupby(col1)[col2]:返回按列col1进行分组后,列col2的均值 df.pivot_table(index...=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表 df.groupby(col1).agg(np.mean
pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...(2,6)) s.apply(lambda x : 2 * x) 对dataframe 使用apply # 对df 使用apply,都是按行或按列操作,不能保证对每一个元素进行操作 df = pd.DataFrame..., 20) col = list('abcde') df = pd.DataFrame(val, index = idx, columns = col) # df 中的每一个元素都会被加3 print(...接在前一个df 后面 df12 = pd.concat([df1, df2]) 当然,列标和行标不一定是对应的,这个时候两DataFrame未匹配上的label或columns下的值为NaN concat...agg的形参是一个函数会对分组后每列都应用这个函数。
一、如何使用列表创建⼀个DataFrame # 导入pandas库 import pandas as pd # 创建一个列表,其中包含数据 data = [['A', 1], ['B', 2], ['...3 二、如何使用Series 字典对象生成 DataFrame # 导入pandas库 import pandas as pd # 创建一个字典对象 data = {'Name': ['Tom', '...支持加(+)、减(-)、乘(*)、除(/)、取余(%)等基本算术运算符,可以用于DataFrame和Series之间的元素级运算,以及与标量的运算。...七、apply() 函数使用方法 如果需要将函数应⽤到DataFrame中的每个数据元素,可以使⽤ apply() 函数以便将函数应⽤于给定dataframe中的每⼀⾏。...如果想要对每个分组应用多个函数,可以使用agg()方法,并传入一个包含多个函数名的列表,例如group_1.agg(['sum', 'mean'])。
head()方法和tail() 方法则是分别显示数据集的前n和后n行数据。如果想要随机看N行的数据,可以使用sample()方法。...df["gender"].unique() df["gender"].nunique() 输出: 在数值数据操作中,apply()函数的功能是将一个自定义函数作用于DataFrame的行或者列;applymap...()函数的功能是将自定义函数作用于DataFrame的所有元素。...df.reset_index(drop=True) 输出: rename()重命名用于更改行列的标签,即行列的索引。可以传入一个字典或者一个函数。在数据预处理中,比较常用。...df.select_dtypes("int64") 输出: isin()接受一个列表,判断该列中元素是否在列表中。
领取专属 10元无门槛券
手把手带您无忧上云