首页
学习
活动
专区
圈层
工具
发布

pandas drop参数_pandas concat函数

pandas中dropna()参数详解 DataFrame.dropna( axis=0, how=‘any’, thresh=None, subset=None, inplace=False) 1.axis...参数确定是否删除包含缺失值的行或列 axis=0或axis=’index’删除含有缺失值的行, axis=1或axis=’columns’删除含有缺失值的列, import pandas as pd import...25 df.dropna(axis=1) #输出 name 0 Alfred 1 Batman 2 Catwoman 2.how参数当我们至少有一个NA时,确定是否从DataFrame中删除行或列...how=’all’时表示删除全是缺失值的行(列) how=’any’时表示删除只要含有缺失值的行(列) df.dropna(how='all') name toy born 0 Alfred NaN...df.dropna(subset=['name', 'born']) #删除在'name' 'born'列含有缺失值的行 name toy born 1 Batman Batmobile 1940

90520
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas数据合并:concat与merge

    本文将深入探讨Pandas中的两种主要合并方法——concat和merge,从基础概念到常见问题,再到报错解决,帮助读者全面掌握这两种方法。...二、concat的基本用法(一)概述concat函数用于沿着一个特定的轴(行或列)将多个Pandas对象(如DataFrame或Series)连接在一起。...# 只选择成绩列进行拼接result = pd.concat([chinese_scores['chinese_score'], math_scores['math_score']], axis=1)print...对于concat,可以通过选择特定的列或者重命名列来避免。对于merge,使用sufixes参数可以很好地解决这个问题。...总之,concat和merge是Pandas中非常重要的数据合并工具,熟练掌握它们的用法以及应对常见问题的方法,能够大大提高数据分析工作的效率。

    1.2K10

    Pandas知识点-连接操作concat

    Pandas提供了多种将Series、DataFrame对象合并的功能,有concat(), merge(), append(), join()等。...concat是英文单词concatenate(连接)的缩写,concat()方法用于将Series或DataFrame连接到一起,达到组合的功能,本文介绍concat()方法的具体用法。...concat(): 将多个Series或DataFrame连接到一起,默认为按行连接(axis参数默认为0),结果的行数为被连接数据的行数之和。...前面提到concat()的第一个参数可以用字典的方式传入,其效果与使用keys参数相同。 给结果添加外层的行索引后,可以用添加的外层行索引将被连接数据取出。 ?...以上就是Pandas连接操作concat()方法的介绍,本文都是以DataFrame为例,Series连接以及Series与DataFrame混合连接的原理都相同。

    3.3K50

    wm_concat()和group_concat()合并同列变成一行的用法以及和concat()合并不同列的区别

    原标题:oracle的wm_concat()和mysql的group_concat()合并同列变成一行的用法以及和concat()合并不同列的区别 前言 标题几乎已经说的很清楚了,在oracle中,concat...()函数和 “ || ” 这个的作用是一样的,是将不同列拼接在一起;那么wm_concat()是将同属于一个组的(group by)同一个字段拼接在一起变成一行。...wm_concat()和concat()具体的区别 oracle中concat()的使用 和 oracle中 “ || ” 的使用 这两个都是拼接字段或者拼接字符串的功能。...wm_concat()这个个函数的介绍,我觉得都介绍的不是很完美,他们都是简单的说 这个是合并列的函数,但是我总结的概括为:把同组的同列字段合并变为一行(会自动以逗号分隔)。...mysql是一样的用法,把wm_concat 换成 group_concat()就可以啦,具体可以参考这篇文章的使用:浅析MySQL中concat以及group_concat的使用 不知道大家学会这个wm_concat

    11.5K50

    Oracle列转行函数vm_concat使用

    一、业务场景 今天需要实现一个table,有一列的效果是:用户姓名A(账号a),用户姓名B(账号b)…这种格式。这就想到oracle的列转行函数vm_concat。...t_step_define sd on fs.step_id = sd.step_id group by sd.step_name 查询出来,是用,分隔的数据,实现列转行显示...二、vm_concat函数补充 想通过id分组,可以用这样的sql: select vm_concat(a) from A group by id 不想用默认的逗号分隔,可以用SQL: ps:下面sql...是替换默认的逗号,用’|'符号 select replace(vm_concat(a),',''|') from A group by id oracle11用vm_concat导致查询缓慢 ps:在...by id 三、vm_concat版本问题 vm_concat版本不兼容问题,ps:可以参考我的另外一篇博客: https://blog.csdn.net/u014427391/article/details

    6.1K40

    pandas基础:重命名pandas数据框架列

    标签:Python与Excel,pandas 重命名pandas数据框架列有很多原因。例如,可能希望列名更具描述性,或者可能希望缩短名称。本文将介绍如何更改数据框架中的名称。...准备用于演示的数据框架 pandas库提供了一种从网页读取数据的便捷方式,因此我们将从百度百科——世界500强公司名单——加载一个表格。 图1 看起来总共有6列。下面单独列出了这个表的列。...我们只剩下以下几列: 图5 我认为有些名字太啰嗦,所以将重命名以下名称: 最新排名->排名 总部所在国家->国家 就像pandas中的大多数内容一样,有几种方法可以重命名列。...我们可以使用这种方法重命名索引(行)或列,我们需要告诉pandas我们正在更改什么(即列或行),这样就不会产生混淆。还需要在更改前后告诉pandas列名,这提高了可读性。...例如,你的表可能有100列,而只更改其中的3列。唯一的缺点是,在名称更改之前,必须知道原始列名。 .set_axis()或df.columns,当你的表没有太多列时,因为必须为每一列指定一个新名称!

    2.6K30

    Pandas 查找,丢弃列值唯一的列

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

    9.2K21

    Pandas基础:在Pandas数据框架中移动列

    标签:pandas,Python 有时候,我们需要在pandas数据框架内移动一列,shift()方法提供了一种方便的方法来实现。...在pandas数据框架中向上/向下移动列 要向下移动列,将periods设置为正数。要向上移动列,将其设置为负数。 注意,只有数据发生了移位,而索引保持不变。...目前,如果想使用freq参数,索引必须是datetime类型的数据,否则pandas将引发NotImplementedError。 向左或向右移动列 可以使用axis参数来控制移动的方向。...默认情况下,axis=0,这意味着移动行(向上或向下);设置axis=1将使列向左或向右移动。 在下面的示例中,将所有数据向右移动了1列。因此,第一列变为空,由np.nan自动填充。...Pandas.Series shift()方法 如前所述,Series类还有一个类似的shift()方法,其工作方式完全相同,只是它对一个系列(即单个列)而不是整个数据框架进行操作。

    4K20

    Pandas基础:列方向分组变形

    小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。 刚才碰到一个非常简单的需求: ? 但是我发现大部分人在做这个题的时候,代码写的异常复杂。...首先读取数据: import pandas as pd df = pd.read_excel("练习.xlsx", index_col=0) df 结果: ?...为了后续处理方便,我将不需要参与分组的第一列事先设置为索引。 groupby分组相信大部分读者都使用过,但一直都是按行分组,不过groupby不仅可以按行分组,还可以按列进行分组。...True) split.reset_index(inplace=True) split["年份"] = year result.append(split) result = pd.concat...split.reset_index(inplace=True) 表示还原索引为普通的列。 split["年份"] = year 将年份添加到后面单独的一列。

    1.8K20
    领券