printf("%d\t", result[i][j]); } printf("\n"); } return 1; } 最近发东西比较频繁...,因为我的图床写好了,上传图片方便多了。
第一个参数是逻辑条件Numpy,它将为数组中的每个元素计算一个布尔数组。当条件满足且为True时,将返回第二个参数,否则返回第三个参数。...根据经验,你需要为每个return语句设置n个条件,这样就可以将所有布尔数组打包到一个条件中,以返回一个选项。...代码如下: 如果添加了.values: 4 更复杂的 有时必须使用字符串,有条件地从字典中查找内容,比较日期,有时甚至需要比较其他行的值。我们来看看!...这和最终结果是一样的,只是下面的那个代码更长。 4、使用来自其他行的值 在这个例子中,我们从Excel中重新创建了一个公式: 其中A列表示id,L列表示日期。...向量化所需要的所有函数都是在同一行上比较的值,这可以使用pandas.shift()实现! 确保你的数据正确排序,否则你的结果就没有意义! 很慢!
一、向量初始化 NumPy中曾有一个专用的matrix类来代表矩阵,后来被弃用,现在NumPy中的矩阵和2维数组表示同一含义。...axis参数的值实际上就是维度值,如第一个维是axis=0 ,第二维是axis=1,依此类推。因此,在2维数组中,axis=0指列方向,axis=1指行方向。...使用矩阵乘法@可以计算非对称线性代数外积,两个矩阵互换位置后计算内积: [8046d12b02fd5221149ce186e5f034b3.png] 四、行向量与列向量 在NumPy的2维数组中,行向量和列向量是被区别对待的...严格来说,除一维外的所有数组的大小都是一个向量(如a.shape == [1,1,1,5,1,1]),因此NumPy的输入类型是任意的,但上述三种最为常用。...但好在NumPy提供了其他功能,这些功能允许按一列或几列进行排序: 1、a[a [:,0] .argsort()]表示按第一列对数组进行排序: [957cf897dcc850eb0e3f40d4650e773e.png
作者:涂铭,刘祥,刘树春 NumPy提供了以下几个主要功能: ndarray——一个具有向量算术运算和复杂广播能力的多维数组对象。 用于对数组数据进行快速运算的标准数学函数。...本文NumPy的要点包括: 创建NumPy数组 获取NumPy中数组的维度 NumPy数组索引与切片 NumPy数组比较 替代值 NumPy数据类型转换 NumPy的统计计算方法 01 创建数组 在NumPy...print(matrix[1:3,0:2])代表的是选取行的索引1和2以及列的索引是0和1的所有数据。 07 数组比较 NumPy强大的地方是数组或矩阵的比较,数据比较之后会产生boolean值。..._25)输出的是[False True False],首先matrix[:,1]代表的是所有的行,以及索引为1的列->[10,25,40],最后和25进行比较,得到的就是false,true,false...将matrix的第二列和25比较,得到一个布尔值数组。second_column_25将matrix第二列值为25的替换为10。 替换有一个很棒的应用之处,就是替换那些空值。
有时我们需要创建一个空数组,大小和元素类型与现有数组相同: ? 实际上,所有用常量填充创建的数组的函数都有一个_like对应项,来创建相同类型的常数数组: ?...从NumPy数组中获取数据的另一种超级有用的方法是布尔索引,它允许使用各种逻辑运算符,来检索符合条件的元素: ? 注意:Python中的三元比较3NumPy数组中不起作用。...这些问题已在math.isclose函数中得到解决。 矩阵运算 NumPy中曾经有一个专用的类matrix,但现在已弃用,因此下面将交替使用矩阵和2D数组两个词。 矩阵初始化语法与向量相似: ?...和一维数组一样,上图的view表示,切片数组实际上并未进行任何复制。修改数组后,更改也将反映在切片中。 axis参数 在许多操作(例如求和)中,我们需要告诉NumPy是否要跨行或跨列进行操作。...在第一部分中,我们已经看到向量乘积的运算,NumPy允许向量和矩阵之间,甚至两个向量之间进行元素的混合运算: ? 行向量与列向量 从上面的示例可以看出,在二维数组中,行向量和列向量被不同地对待。
,本文将通过直观易懂的图示解析常用的 NumPy 功能和函数,帮助你理解 NumPy 操作数组的内在机制。...在进行测试时,我们通常需要生成随机数组: 向量索引 一旦你的数组中有了数据,NumPy 就能以非常巧妙的方式轻松地提供它们: 除了「花式索引(fancy indexing)」外,上面给出的所有索引方法都被称为...所有包含花式索引的方法都是可变的:它们允许通过分配来修改原始数组的内容,如上所示。这一功能可通过将数组切分成不同部分来避免总是复制数组的习惯。...a[:,0].argsort(kind='stable')] 2. lexsort 函数能使用上述方式根据所有列进行排序,但它总是按行执行,而且所要排序的行的顺序是反向的(即自下而上),因此使用它时会有些不自然...命令来堆叠图像会更方便一些,向一个 axis 参数输入明确的索引数值: 堆叠一般三维数组 如果你不习惯思考 axis 数,你可以将该数组转换成 hstack 等函数中硬编码的形式: 将数组转换为
在进行测试时,我们通常需要生成随机数组: 向量索引 一旦你的数组中有了数据,NumPy 就能以非常巧妙的方式轻松地提供它们: 除了「花式索引(fancy indexing)」外,上面给出的所有索引方法都被称为...所有包含花式索引的方法都是可变的:它们允许通过分配来修改原始数组的内容,如上所示。这一功能可通过将数组切分成不同部分来避免总是复制数组的习惯。...二维的情况则会更困难一些(人们正在请求这一功能)。 搜索向量中的元素 与 Python 列表相反,NumPy 数组没有索引方法。人们很久之前就在请求这个功能,但一直还没实现。...a[:,0].argsort(kind='stable')] 2. lexsort 函数能使用上述方式根据所有列进行排序,但它总是按行执行,而且所要排序的行的顺序是反向的(即自下而上),因此使用它时会有些不自然...命令来堆叠图像会更方便一些,向一个 axis 参数输入明确的索引数值: 堆叠一般三维数组 如果你不习惯思考 axis 数,你可以将该数组转换成 hstack 等函数中硬编码的形式: 将数组转换为 hstack
作者:魏溪含 涂铭 张修鹏 Numpy提供的主要功能具体如下: ndarray——一个具有向量算术运算和复杂广播能力的多维数组对象。 用于对数组数据进行快速运算的标准数学函数。...]) Numpy数组还封装了其他方法来创建矩阵。...#将x向量转为三行五列的二维矩阵 Print(X.ndim) #输出X矩阵的维度,这时能看到的维度是2维 reshape方法的特别用法 如果只关心需要多少行或者多少列,其他由计算机自己来算...06 Numpy中的矩阵运算 矩阵运算(加、减、乘、除),在本书中将严格按照数学公式来进行演示,即两个矩阵的基本运算必须具有相同的行数与列数。本例只演示两个矩阵相减的操作,其他的操作读者可以自行测试。...的第一行[1,2,3]与a矩阵的第一列[1,3,5]相乘然后相加,接着将mymatrix的第一行[1,2,3]与a矩阵的第二列[2,4,6]相乘然后相加,以此类推。
Numpy提供的主要功能具体如下: ndarray——一个具有向量算术运算和复杂广播能力的多维数组对象。 用于对数组数据进行快速运算的标准数学函数。...]) Numpy数组还封装了其他方法来创建矩阵。...#将x向量转为三行五列的二维矩阵 Print(X.ndim) #输出X矩阵的维度,这时能看到的维度是2维 reshape方法的特别用法 如果只关心需要多少行或者多少列,其他由计算机自己来算...06 Numpy中的矩阵运算 矩阵运算(加、减、乘、除),在本书中将严格按照数学公式来进行演示,即两个矩阵的基本运算必须具有相同的行数与列数。本例只演示两个矩阵相减的操作,其他的操作读者可以自行测试。...的第一行[1,2,3]与a矩阵的第一列[1,3,5]相乘然后相加,接着将mymatrix的第一行[1,2,3]与a矩阵的第二列[2,4,6]相乘然后相加,以此类推。
此前,我们在《玩数据必备Python库:Numpy使用详解》一文中介绍了利用Numpy进行矩阵运算的方法,本文继续介绍Numpy的统计计算及其他科学运算的方法。...sum():计算矩阵元素的和;矩阵的计算结果为一个一维数组,需要指定行或者列。 mean():计算矩阵元素的平均值;矩阵的计算结果为一个一维数组,需要指定行或者列。...7代表的是x向量中的0的索引地址,第二个元素12代表的是x向量中的1的索引地址,其他元素以此类推。...数组比较 Numpy有一个强大的功能是数组或矩阵的比较,数据比较之后会产生boolean值。..._25)输出的是[False, True False],首先matrix[:,1]代表的是所有的行,以及索引为1的列,即[10,25,40],最后与25进行比较,得到的就是[False, True, False
Fancy Indexing 首先创建一个向量。 import numpy as np x = np.arange(16) 我们可以对向量进行和 Python 列表一样的索引和切片操作。...比较直观的想法是直接将三个位置的元素索引出来,然后再存储到一个新的向量中。 np.array([x[3], x[5], x[8]]) 不过这种调用方式显然不够简洁,方便。...x 中的所有元素都和 3 进行比较,返回的是一个和 x 相同形状的 bool 数组。...类似的,我们可以对所有的比较运算符进行这种操作。 x > 3 x <= 3 x >= 3 x == 3 x != 3 对于这种比较运算符,我们可以与加减乘除进行结合实现更加复杂的逻辑。...x > 3 和 x 的是两个形状相同的布尔数组,这里希望两个布尔数组按照相应的索引位置进行与的运算,相当于把两个布尔数组中的每个元素看成是一个位。
import numpy as np 然后使用arange创建一个7×7的数组,值范围从1到48。另外,创建另一个包含无数据值的数组,该数组的形状和数据类型与初始数组相同。...列偏移 循环中NumPy移动窗口的Python代码 我们可以用三行代码实现一个移动窗口。这个例子在滑动窗口内计算平均值。首先,循环遍历数组的内部行。其次,循环遍历数组的内部列。...向量化滑动窗口 Python中的数组循环通常计算效率低下。通过对通常在循环中执行的操作进行向量化,可以提高效率。移动窗口矢量化可以通过同时抵消数组内部的所有元素来实现。 如下图所示。...从左到右的偏移索引:[:-2,2:],[:-2,:-2],[1:-1、1:-1] Numpy数组上的向量化移动窗口的Python代码 有了上述偏移量,我们现在可以轻松地在一行代码中实现滑动窗口。...速度比较 上述两种方法产生相同的结果,但哪一种更有效?我计算了从5行到100列的数组的每种方法的速度。每种方法对每个测试100次。下面是每种方法的平均时间。 ? 很明显,向量化的方法更加有效。
这个新的张量包含与转换前相同的值,但是它被看成一个3行4列的矩阵。要重点说明一下,虽然张量的形状发生了改变,但其元素值并没有变。注意,通过改变张量的形状,张量的大小不会改变。...有时,我们希望使用全0、全1、其他常量,或者从特定分布中随机采样的数字来初始化矩阵。我们可以创建一个形状为(2,3,4)的张量,其中所有元素都设置为0。...X == Y 对张量中的所有元素进行求和,会产生一个单元素张量。 X.sum() 三、广播机制 在上面的部分中,我们看到了如何在相同形状的两个张量上执行按元素操作。...与任何Python数组一样:第一个元素的索引是0,最后一个元素索引是-1;可以指定范围以包含第一个元素和最后一个之前的元素。 ...torch张量和numpy数组将共享它们的底层内存,就地操作更改一个张量也会同时更改另一个张量。
排序将根据生成的排序值进行,而不是直接对元素本身进行比较。 例如,假设有一个列表 nums,我们想按照数字的绝对值进行排序。...然后,使用@运算符将数组a作为行向量与数组d进行矩阵乘法的操作。根据矩阵乘法的规则,行向量与二维数组的乘法将得到一个新的行向量。结果赋值给变量f。...二维数组与列向量的矩阵乘法: g = d @ a # a作为列向量 这行代码使用@运算符将数组d与数组a作为列向量进行矩阵乘法的操作。...总结:这段代码展示了NumPy库中矩阵乘法的不同应用场景,包括行向量与列向量的乘法、行向量与二维数组的乘法以及二维数组与列向 量的乘法。...这个操作将用于生成3D图形中的x坐标。 y = z**2 * np.cos(z):这行代码与上一行类似,只不过这里将z数组的每个元素的余弦值与平方相乘,生成一个新的数组,并将其赋值给变量y。
而如果这个时候,需要进行大量的运算,我们不妨将list列表转换为numpy数组进行计算。...元素的截取 既然创建了Numpy数组,那么我们就需要获取数组中的元素进行操作。那么如果获取Numpy数组中指定的元素呢?...而Numpy改变维度的函数如下表所示: 函数 意义 nd.reshape 将向量nd维度进行改变,不修改向量本身 nd.resize 将向量nd维度进行改变,修改向量本身 nd.T 将向量nd进行转置...nd.ravel 将向量nd进行展平,即多维变一维,不会产生原向量的副本 nd.flatten 将向量nd进行展平,即多维变一维,返回原数组的副本 nd.squeeze 只能对一维数组进行降维,多维不会报错...而append与concatenate操作的数组必须有相同的行数或者列数(满足一个即可)。 append、concatenate以及stack都有一个axis参数,控制数组的合并是按行还是列进行。
数组索引Array indexing Numpy 提供了多种对数组进行索引的方法。 切片Slicing:与Python列表类似,numpy数组可以被切片。...要计算向量的内积、将向量乘以矩阵或乘以矩阵,使用 dot 函数。dot 函数既可以作为 NumPy 模块中的函数使用,也可以作为数组对象的实例方法使用。...例如,假设希望将一个常量向量加到矩阵的每一行,可以这样做: import numpy as np # 将向量v加到矩阵x的每一行, # 结果存储在矩阵y中 x = np.array([[1,2,3],...请注意,将向量v添加到矩阵x的每一行等同于通过垂直堆叠多个v的副本来创建矩阵vv,然后对x和vv进行逐元素相加。...看看这个使用广播功能的版本: import numpy as np # 将向量v加到矩阵x的每一行, # 结果存储在矩阵y中 x = np.array([[1,2,3], [4,5,6], [7,8,9
1xn 或 nx1)或 1D NumPy 数组 a(长度 n)中的最后一个元素 a(2,5) a[1, 4] 访问二维数组 a 中第二行第五列的元素 a(2,:) a[1] 或 a[1, :] 二维数组...NumPy 通过引用进行赋值 y=x(2,:) y = x[1, :].copy() NumPy 切片是引用传递的 y=x(:) y = x.flatten() 将数组转换为向量(注意这会强制进行一次复制...许多 NumPy 函数返回数组,而不是矩阵。 元素操作与线性代数操作有明显区别。 如果你喜欢,可以使用标准向量或行/列向量。...基本迭代 在除了一个轴之外的所有轴上进行迭代 在多个数组上进行迭代 在多个数组上进行广播 用户定义数据类型 添加新数据类型 注册强制类型转换函数 注册强制类型转换规则...广义上来说,用于与 NumPy 互操作的特性分为三组: 将外部对象转换为 ndarray 的方法; 将执行延迟从 NumPy 函数转移到另一个数组库的方法; 使用 NumPy 函数并返回外部对象实例的方法
用它来构建数组 (★☆☆) 39. 创建一个大小为10的向量,值为0到1的小数(不包含0和1) (★★☆) 40. 创建一个大小为10的随机向量并对其进行排序 (★★☆) 41....设有一个(100,2)的随机向量, 每组值代表一个坐标, 求点与点之间的距离 (★★☆) 53. 如何就地将float(32位)数组转换为整型(32位)数组? 54. 如何读取以下文件??...什么东西与numpy数组的枚举等价?(★★☆) 56. 生成一个通用的二维高斯型数组 (★★☆) 57. 如何将p个元素随机放置在二维数组中 (★★☆) 58....将int的向量转换为二元矩阵来表示(★★★) 96. 设有一个二维数组,如何提取值和其他行都不同的行?(★★★) 97....设有两个矢量(X,Y)描述的一条路径,如何使用等距样本法对其进行采样 99. 给定整数n和2维数组X,从X中选择可以解释为具有n度的多项分布的行,即,仅包含整数并且总和为n的行。
比较重要的思想有:1.线性代数的核心内容是研究有限维线性空间的结构和线性空间的线性变换;2.向量的线性相关性是研究线性空间结构与线性变换理论的基础;3.矩阵是有限维线性空间的线性变换的表示形式;4.线性方程组的求解问题是...但是为了明确哪些是numpy中实现的,哪些是scipy中实现的,本文还是进行了区分。...此处和MATLAB的二维数组(矩阵)的建立有很大差别。 同样,numpy中也有很多内置的特殊矩阵: b1=np.zeros((2,3)) #生成一个2行3列的全0矩阵。...此外,numpy中还提供了几个like函数,即按照某一个已知的数组的规模(几行几列)建立同样规模的特殊数组。...在numpy中,也有一个计算矩阵的函数:funm(A,func)。 5.索引 numpy中的数组索引形式和Python是一致的。
作者:乐雨泉(yuquanle),湖南大学在读硕士,研究方向机器学习与自然语言处理。 Numpy(Numeric Python)是一个用 Python 实现的科学计算的扩展程序库。 包括: 1....一个强大的N维数组对象 Array; 2. 比较成熟的(广播)函数库; 3. 用于整合 C/C++ 和 Fortran 代码的工具包; 4. 实用的线性代数、傅里叶变换和随机数生成函数。...数组是一个由不同数值组成的网格, 网格中的数据都是同一种数据类型并且可以通过非负整型数的元组来访问。...# 把一个向量加到矩阵的每一行,可以这样做 import numpy as np x = np.array([[1,2,3], [4,5,6], [7,8,9]]) v = np.array([1, 0...广播机制让我们不用创建vv,就能直接运算 y = x + v # 使用广播将v添加到x的每一行 print(y) # 广播机制例子 # 1.计算向量的外积 v = np.array([1,2,3])
领取专属 10元无门槛券
手把手带您无忧上云