首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    618技术揭秘:弹窗搭投实践

    Tech 导读 弹窗作为非常重要的营销触达手段被各业务广泛应用,本文主要介绍 “XView 营销弹窗搭投系统” 关于快速搭建、投放配置营销弹窗能力的实现原理,以及在 618 等重要场景中的应用和实践...618 来了,对于业务团队来说,最重要的事情莫过于各种营销。如会场、直播带货、频道内营销等等。...而弹窗作为一个极其重要的强触达营销工具,通常用来渲染氛围、引流主会场、以及通过频道活动来提升频道复访等。...通过以上分类的梳理,从业务视角来看,功能性的弹窗在中的重要性是其次的,而主要是营销类的弹窗,它们往往具备以下特点: 突发创意/需求:偶然的创意玩法,或突发的外部业务需求,时效性要求高,即上线时间不可逾期...尤其后续一些考虑 h5 实现的弹窗,完全可以迁移到这套搭投系统中,通过对比 h5 弹窗开发(图左侧)及搭投的方式(图右侧),可以大致看到使用搭投系统的优势: 图14.

    31320

    “618”你准备好了吗?

    流量高峰期,一旦出现商品页面加载缓慢、抢购失败,立即下单报错,购物车内添加的商品丢失等问题,用户就会对平台,乃至品牌本身产生“心理阴影”,那么我们该如何对系统进行“彻查”,才能保障期间用户的顺滑体验呢...一到心就慌?...诉求1   在期间,服务器承压往往是个重大的考验,而很多企业往往会忽视压力测试这一环节,没有正确预估系统能承载的最大流量,或是虽然提前做了压测,但由于没有清晰完整的压测规划和完善的应对方案,并没有真正了解各链路的承载能力...WeTest压测大师领航智慧零售行业解决方案   为保障活动顺利开展,WeTest“压测大师”专家团队为企业打造零售行业服务器性能解决方案,能够有效解决零售品牌数字化转型过程中涌现的系统性能瓶颈,...目前,压测大师已为潮宏基、匡威、蒙牛等知名品牌提供过大前的压测专家服务,帮助企业高效解决性能瓶颈问题,保障期间核心系统的稳定性。

    5.6K20

    数据库如何应对保障活动

    现在,我们直接切入主题--数据库如何 积极应对,全力保障 活动。这个题目分解为三个部分进行讲解: 第一部分,准备工作;第二部分,促进行时;第三部分,后复盘。...“功夫在诗外”,同样,活动下数据库稳定、顺畅的运行,主要工作在前的准备上,所以,准备工作是重点。 一.前准备工作 1.对活动应该尽可能地去了解,去熟悉。...2.梳理活动用到的系统链路,对链路上的系统和应用有个较为清晰的了解,制作活动全链路的数据库流程图。 3.梳理链路上的数据库资源。...12.评估期间应用部署变更可能对数据库造成的影响。比如,为应对活动的系统请求,SA可能会增加应用的部署。 13.期间数据库性能阈值预估。...6.记录过程中出现的主要异常。 三.后复盘 1.完善补充促使用的链路图,完善没有想到的节点。 2.收集汇总期间出现的问题点。

    6.8K00

    电商,性能测试都在做什么?

    电商期间剧增的流量,对电商平台相关的软件系统也带来了更严峻的挑战。 比如秒杀抢购活动要求高并发处理能力,核心业务流程要求更好的可用性以及稳定性,为了需要精确的对线上服务扩容做容量规划等等。...这篇博客,来聊聊电商期间,性能测试工程师都在做哪些事情。。。 PS:由于某些原因,这篇博客延期了将近一个月才发布,不过即将为双十一做准备,到时候会更一篇更详细的博客来说明具体的细节。。。...由于时间紧任务重,为了保证在期间系统能稳定运行,需要梳理出核心的业务。如下图: ?...②、除了核心业务流程,还有时会有一些抢购秒杀抽奖等活动,这类型的业务一般具有短时间内流量剧增,商品优惠券数量有限下的超卖现象,因此需要考虑高并发和超卖问题。...对于我司来说,第一次大力度的,只能通过高峰流量来进行倍增预估,然后做好随时扩容的准备。 4、渠道引流转化量 鉴于业务特性以及商务合作方面,有时候会有其他合作渠道的引流。

    4.3K11

    电商GMV和支付规模预测

    在电商时,为了能够合理地制定KPI、高效地商品备货和营销资源的安排,都通常都需要对这次大的GMV和订单规模做预测,避免出现诸如产品断货或者过剩、人员效率不高等问题,导致客户流失未能成交。...本篇文章,就简单地说一说在做大预测时候常用的一般方法和逻辑。这里需要说明的时候,预测是允许存在一定误差的,我们无法要求实现百分百的准确,但是至少,需要做到和最终结果在数量级上是一致的。...这里很明确的,我们就是要预测某个大时间段的GMV,做本次预测的核心目标是,让业务方做好对促销资源投入的评估,最终实现投入资源的合理分配。...在传统的预测中,通常是基于历史GMV趋势做预测的,衡量的是历史期相对平销期流失爆发度,计算公式是本次大GMV=前平销期GMV*爆发系数,其中,前平销期GMV可以通过时间序列模拟获得,而期间的爆发系数通常是基于业务经验做推断获得的...这样,预测的输出结果就明确了,首先是用户id,用于用户的分类,例如基于此,可以将用户分为A组、B组等;其次是不同分类用户的购买概率,例如A类、B类客户购买概率分布是多少;最后是的购买金额。

    6.3K40

    高并发容量NoSQL解决方案探索

    同时,NoSQL作为近几年新崛起的一门技术,也受到越来越多的关注。本文分享两大方向内容:一、公司在KV存储上的架构演进以及运维需要解决的问题;二、对NoSQL如何选型以及未来发展的一些思考。...而NoSQL一开始就是分布式的,解决了读写和容量扩展性问题。以上两点,也是NoSQL产生的根本原因。 实现分布式主要有两种手段:副本(Replication)和分片(Sharding)。...后来我们对它进行功能性补充,便没有遇到的问题。 下图是个推运维平台。 ? 第一个是IT硬件资源平台,主要维护主机维度的物理信息。...grafana监控系统聚合了多个IDC数据,我们运维每天只需看一下屏就够了。 Slatstack,用于实现自动化发布,实现标准化并提高工作效率。...Redis3主从重置的概率比Redis2减少,Redis4支持节点重启以后也能增量同步,这是Redis本身进行了很多改进。 ? 我们现在主要使用的是2.8.20,属于比较容易能产生主从重置。

    85330

    高并发容量NoSQL解决方案探索

    同时,NoSQL作为近几年新崛起的一门技术,也受到越来越多的关注。...而NoSQL一开始就是分布式的,解决了读写和容量扩展性问题。以上两点,也是NoSQL产生的根本原因。 实现分布式主要有两种手段:副本(Replication)和分片(Sharding)。...后来我们对它进行功能性补充,便没有遇到的问题。 下图是个推运维平台。 ? 第一个是IT硬件资源平台,主要维护主机维度的物理信息。...grafana监控系统聚合了多个IDC数据,我们运维每天只需看一下屏就够了。 Slatstack,用于实现自动化发布,实现标准化并提高工作效率。...Redis3主从重置的概率比Redis2减少,Redis4支持节点重启以后也能增量同步,这是Redis本身进行了很多改进。 ? 我们现在主要使用的是2.8.20,属于比较容易能产生主从重置。

    98880

    新春:买域名送解析,域名续费享优惠!

    / .xyz/.love/.link/.art 新春价: 20元以下 特价 解析 DNS解析 专业版 新春价:  188元 /年 29元/年 DNS解析 企业版 新春价:  2680元...1999元起 购买入口 扫码直达DNSPod新春专场 买域名送 解析 买.cn 送解析专业版 新春价:  217元起 28.91元起 买.com 送解析专业版 新春价: 256元起 68...元起 买.top 送解析专业版 新春价:  197元起 9元起 买.xyz 送解析专业版 新春价:  206元起 18元起 域名 续费 .com续费 新春价:  75元/年 72元/年 .cn...续费 新春价:  38元/年 35元/年 .com.cn续费 新春价:  38元/年 35元/年 .top续费 新春价:  28元/年 25元/年 .xyz续费 新春价:  79元/年...75元/年 .net续费 新春价:  79元/年 75元/年 购买入口 扫码直达DNSPod新春专场

    31.6K20

    转化率精准预估优化论文随笔记

    这是一篇阿里妈妈的论文【KDD’23 | 转化率预估新思路:基于历史数据复用的转化率精准预估】 常规的销量预测,遇到一些特大事件,直播、,一般很难预估得准确。...论文地址: https://arxiv.org/pdf/2305.12837.pdf 只在此摘录一些片段: 1 片段一:预估不足的原因 直接原因:周期内用户转化行为突变(五花八门的电商机制:...10小时的真实CVR均值 3 期间 分布相似数据的搜寻 找到当下,相似的历史“促销”数据,包括双11,618,双12等等时间点 寻找的方式就是构建时序向量,然后求相似。...第一个是查找与99相似的促销。我们检索到的前两个日期是2022年8月8日的88,以及2022年6月14日的618二峰,CVR也都比较接近。第二个例子是寻找与88促销相似的促销。...我们检索到的Top2结果是2022年7月12日的狂暑季,以及7月31日的七夕节(没有检索到99是因为88发生在99之前)。同时,我们还随机展示了一个低相似度的非日期。

    51330

    搜索,场景下智能化演进之路

    作为淘宝平台的基石,搜索也一直在打造适合电商平台的人工智能体系,而每年双11都是验证智能化进程的试金石。...第一次在双11场景下实现了大规模的实时计算影响双11当天的流量分配。 2014年双11当天,Pora系统首次经受了双11巨大流量的洗礼,系统运行可以说是一波三折。...2. 2015年双11,双链路实时体系大放异彩 2014年双11,实时技术在场景上实现了商品维度的特征实时,表现不俗。...因此效果会较离线模型有较大提升,特别是在这种实时数据极为丰富的情况下。 问题2:为什么实现秒级的模型更新? 回答:相比离线长期模型,小时级模型和纯实时秒级模型的时效性都有大幅提升。...总结 经过三年的技术锤炼,围绕在线人工智能技术的智能框架初具规模,基本形成了在线学习加智能决策的智能搜索系统,为电商平台实现消费者、卖家、平台三方利益最大化奠定了坚实的基础。

    6.5K40

    中通大数据平台在中的进化

    一年一度的双十一又双叒叕来了,给技术人最好的礼物就是技术指南!...而经过这些年的发展,早已不仅仅局限于电商行业,现在各行各业其实都会采用类似方式做运营活动,汽车界有 818,电商有 618 、11.11 等等,各种各样的场景,对包括数据库在内的基础软件提出了很多新挑战...在对这套系统进行架构升级时,中通把整个存储迁移到 TiDB 上,整个计算迁移到 TiSpark。消息接入依赖于 Spark Link,通过消息队列最终到 TiDB。...对于企业而言,除了支持业务创新,也是一次对自身技术架构的练兵和全链路演练。通过大的极致考验,企业的 IT 架构、组织流程、人才技能都获得了大幅提升。...而在中的经验和思考,也会加速企业日常的业务创新节奏,提升技术驱动的创新效率,打造增长新引擎。

    4.7K40
    领券