当需要查询两个表的交集、并集等数据时,除了嵌套子查询的方式外,还可以使用join的方式提升性能。对于MySQL的join语句,需要两个最基础的“角色”:主表即驱动表,关联表即驱动表。join描述的就是驱动表与被驱动表的关联关系。MySQL有三种关联逻辑处理策略,分别为:Index Nested-Loop Join、Simple Nested-Loop Join、Block Nested-Loop Join。在编写SQL时,需要配合explain使语句选择性能最优的策略。
因为驱动结果集越大,意味着需要循环的次数越多,也就是说在被驱动结果集上面所 需要执行的查询检索次数会越多。
mysql只支持一种join算法:Nested-Loop Join(嵌套循环连接),但Nested-Loop Join有三种变种:
爱可生 DBA 团队成员,擅长故障分析、性能优化,个人博客:https://www.jianshu.com/u/a95ec11f67a8,欢迎讨论。
这个功能刚上线不久,起初查询和导出速度都是蛮快的,把这个SQL放到测试环境也是挺快的。
1.能不能使用 join 语句? 如果可以使用 Index Nested-Loop Join 算法,也就是说可以用上被驱动表上的索引,其实是没问题的; 如果使用 Block Nested-Loop Join 算法,扫描行数就会过多。尤其是在大表上的 join 操作,这样可能要扫描被驱动表很多次,会占用大量的系统资源。所以这种 join 尽量不要用。 2. 如果要使用 join,应该选择大表做驱动表还是选择小表做驱动表? 如果是 Index Nested-Loop Join 算法,应该选择小表做驱动表;如果是
面试最怕遇到的问题是什么,如何做优化一定当仁不让,SQL 优化更是首当其冲,这里先跟大家分享一个比较容易理解的 join 语句的优化~
在选择Join算法时,会有优先级,理论上会优先判断能否使用INLJ、BNLJ: Index Nested-LoopJoin > Block Nested-Loop Join > Simple Nested-Loop Join
相信有开发或DBA小伙伴,对于mysql处理多表关联方式或者说性能方面一直不太满意,对于开发提交的join查询,一般都是比较抗拒的,从而建议将join进行拆分,避免join带来的性能问题,同时也避免了程序与数据库带来网络开销的问题
写过或者学过 Sql 的人应该都知道 left join,知道 left join 的实现的效果,就是保留左表的全部信息,然后把右表往左表上拼接,如果拼不上就是 null。除了 left join以外,还有inner join、outer join、right join,这些不同的 join 能达到的什么样的效果,大家应该都了解了,如果不了解的可以看看网上的帖子或者随便一本 Sql 书都有讲的。今天我们不讲这些 join 能达到什么效果,我们主要讲这些 join 的底层原理是怎么实现的,也就是具体的效果是怎么呈现出来的。
今天这篇文章,我就先跟你说说 join 语句到底是怎么执行的,然后再来回答这两个问题。
最近线上遇到一个问题,后台一个查询把服务给整挂了,然后找了dba看了下sql慢查询,我们explain一下结果。
相信许多开发/DBA在使用MySQL的过程中,对于MySQL处理多表关联的方式或者说性能一直不太满意。对于开发提交的含有join的查询,一般比较抗拒,从而建议将join拆分,避免join可能带来的性能问题,同时也增加了程序和DB的网络交互。
我们来看一下当进行 join 操作时,mysql是如何工作的。常见的 join 方式有哪些?
在阿里巴巴的java开发手册有这么一条强制规定:超过三个表禁止join,需要join的字段,数据类型保持绝对一致,多表关联查询时,要保证被关联的字段需要有索引。
在排查所有查询语句效率的过程中 , 发现了join关联表的时候 , 被驱动表没有走索引而是进行的全表扫描
今天优化了一个,join关联查的语句,需要优化join的语句,那我们肯定得了解他的一个执行过程。正所谓知己知彼,百战百胜!!
关于MySQL 的 join,大家一定了解过很多它的“轶事趣闻”,比如两表 join 要小表驱动大表,阿里开发者规范禁止三张表以上的 join 操作,MySQL 的 join 功能弱爆了等等。这些规范或者言论亦真亦假,时对时错,需要大家自己对 join 有深入的了解后才能清楚地理解。
join 是 MySQL 用来进行联表操作的,用来匹配两个表的数据,筛选并合并出符合我们要求的结果集。
对于 MySQL 的 JOIN,不知道大家有没有去想过他的执行流程,亦或有没有怀疑过自己的理解(自信满满的自我认为!);如果大家不知道怎么检验,可以试着回答如下的问题
作者:胡呈清,爱可生 DBA 团队成员,擅长故障分析、性能优化,个人博客:[简书 | 轻松的鱼],欢迎讨论。
在数据库处理中,Join操作是最基本且最重要的操作之一,它能将不同的表连接起来,实现对数据集的更深层次分析。
我们知道,所谓表连接就是把各个表中的记录都取出来进行依次匹配,最后把匹配组合的记录一起发送给客户端。比如下面把t1表和t2表连接起来的过程如下图
join 方式连接多表,本质就是各个表之间数据的循环匹配。MySQL 5.5 版本之前,MySQL 只支持一种表间关联方式,就是嵌套循环。如果关联表的数据量很大,则 join 关联的执行时间会非常漫长。在 MySQL 5.5 以后的版本中,MySQL 通过引入 BNLJ 算法来优化嵌套执行。
这里使用straight_join,如果我们直接使用join,MySQL优化器可能选t1或t2作为驱动表,但是使用straight_join,会强制t1作为驱动表,t2是被驱动表。
今天这篇文章,我就先跟你说说join语句到底是怎么执行的,然后再来回答这两个问题。
我们知道对于Oracle的表连接,根据SQL连接条件主要支持如下三种连接方法(算法):
两个表 t1 和 t2 , 一样的,包括索引信息 a 字段有索引 b字段没有索引。
可能你会一脸懵逼,But 实际上,其实考的就是 join 这个知识点,不难,看完这篇文章你就会啦~
我:嗨,老板娘,有冰红茶没 老板娘:有 我:多少钱一瓶 老板娘:3块 我:给我来一瓶,给,3块 老板娘:来,你的冰红茶 我:玩呐,我要冰红茶,你给我个瓶盖干哈? 老板娘:这是再来一瓶,我家卖完了,你去隔壁家换一下
在MySQL中,查询操作通常会涉及到联结不同表格,而JOIN命令则在这一过程中扮演了关键角色。在JOIN操作中,我们通常会使用三种不同的方式,分别是内连接、左连接以及右连接。
一般情况下,查询可以看成按如下顺序执行任务:由客户端向服务端发起查询请求,然后在服务器端进行解析,生成执行计划,执行,最后将结果返回给客户端。
最近学习极客时间的MySQL45讲,补充下对于MySQL方面的知识,也在这里把自己之前的疑惑问题记录下来,从中寻找答案。由于InnoDB为常用引擎,以下分期默认都是InnoDB场景。
前段时间碰到一个慢 SQL,NOT IN 子查询被优化器改写成了 NESTED-LOOP ANTI JOIN,但是被驱动表全表扫描无法使用索引,执行耗时 16 秒。SQL 如下:
在MySQL中,join语句想必大家都不陌生,今天我们围绕join语句展开,说一些可能平时不关注的知识点。
left join 左连接,用法如下,这种查询会把左表(student)所有数据查询出来,右表不存在的用空表示,结果图如下
At the parser stage, queries with right outer join operations are converted to equivalent queries containing only left join operations. In the general case, the conversion is performed such that this right join:
在上一篇文章中,我和你介绍了 join 语句的两种算法,分别是 Index Nested-Loop Join(NLJ) 和 Block Nested-Loop Join(BNL)。
MySQL 8.0 相对于 MySQL 5.7,有很多新特性,比如:快速加列、原子 DDL、不可见索引、额外端口、角色管理等。这一节内容,就不讲这些新特性了,只来聊聊最近在工作学习过程中遇到的几处细节上的差异。
前面说了join的用法,外连接有左连接,右连接,内连接,当用外连接的时候,on代表驱动表数据一定会查询来,被驱动表则查出来是null,内连接则on和where使用是一样的,where则是全部过滤掉,不管驱动还是被驱动表不符合的都不返回。
在上周恩墨微信大讲堂的讨论中,几个有趣的视图跃入我们的视野,可以分享给大家。 在Oracle 11g中,新增的视图V$SQL_HINT记录了Oracle数据库中的可用Hint及其历史。 如果串起来,这几个视图的关系极大:V$SQL_FEATURE,V$SQL_FEATURE_HIERARCHY,V$SQL_HINT,通过这几个视图可以了解Oracle的SQL特性,继承关系,以及可用Hint及启用版本等。 v$sql_hint这个视图来自于底层的x$qksht表,其创建语句如下: SELECT INST_ID
本文若未特意说明使用的数据表,均为 MySQL索引(四)常见的索引优化手段 中的示例表。
hello,everyone.爱情只会影响我们打代码的速度,七夕节,我当然打代码了!!!
码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 !
一般来说,使用join语句,会用到两种算法,分别是Index Nested-Loop Join(NLJ) 和 Block Nested-Loop Join(BNL)。
最近,有一个业务需求,给我一份数据 A ,把它在数据库 B 中存在,而又比 A 多出的部分算出来。由于数据比较杂乱,我这里简化模型。
继以上 Flink Join 两篇文章之后探讨最后一类Flink的Join:temporal join。
blog.csdn.net/horses/article/details/102690076
领取专属 10元无门槛券
手把手带您无忧上云