首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    快速测绘和量化地球表面边缘变化的GEE工具-数字化工具(GEEDiT)和边缘变化量化工具(MaQiT)

    利用遥感卫星影像来研究边缘变化是环境过程和地球表面驱动因素的定量化指标,例如冰川边缘消退或海平面上升导致的沿海变化。这里介绍了三种新的、可免费使用的工具,它们可以一起用于处理和可视化,Landsat 4-8和Sentinel 1-2卫星存档数据,能够在很短的时间内实现高效的绘图(通过手动数字化)和自动量化边缘变化。这些工具对各种遥感专家的用户都是高度可访问的,在访问方面几乎没有计算、许可和知识方面的障碍。谷歌地球引擎数字化工具(GEEDiT)允许用户定义地球上任何地方的一个点,并通过一个简单的图形用户界面(GUI)对每个卫星的数据进行过滤,以获得用户定义的时间框架、最大可接受的云量,以及预定义或自定义图像波段组合的选项。GEEDiT允许从每个图像快速地绘制地理参考向量,图像元数据和用户注释自动追加到每个向量,然后可以导出用于后续分析。GEEDiT Reviewer工具允许用户对自己/他人的数据进行质量控制,并根据其特定研究问题的空间/时间要求过滤现有的数据集。边缘变化量化工具(MaQiT)是GEEDiT和GEEDiT Reviewer的补充,允许通过使用两种已建立的方法(以前用于测量冰川边缘变化)和两种新的方法,通过类似的简单GUI快速量化这些边缘变化。MaQiT的开发初衷是量化潮汐冰川末端的变化,尽管工具中包含的方法有可能广泛应用于地球表面科学的多个领域(例如,沿海和植被范围的变化)。这些工具将使地球科学领域的广泛研究人员和学生能够有效地绘制、分析和访问大量数据。

    02

    Python数据处理从零开始----第四章(可视化)背景:Matplotlib

    我们现在将深入研究Matplotlib包,以便在Python中进行可视化。 Matplotlib是一个基于NumPy阵列的多平台数据可视化库,旨在与更广泛的SciPy协同工作。它由John Hunter在2002年构思,最初是作为IPython的补丁,用于通过来自IPython命令行的gnuplot实现交互式MATLAB风格的绘图。 IPython的创始人Fernando Perez当时正完成他的博士学位,而约翰知道他几个月没时间补丁了。约翰认为这是他自己开始的一个提示,Matplotlib软件包诞生了,2003年发布了0.1版本。当它被作为太空望远镜科学研究所选择的绘图包时,它得到了早期的提升。哈勃望远镜背后的科学家在财务上支持Matplotlib的开发并大大扩展了其功能。

    01

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券