首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    LSTM使用MNIST手写数字识别实战的代码和心得

    RNN的架构除了RNN类中的模型不同,其他的构架与CNN类似,如果还没有阅读过CNN文章的可以点击下方链接进入: CNN使用MNIST手写数字识别实战的代码和心得 LSTM(Long Short-Term...Memory长短时记忆网络)虽然在MNIST手写数字识别方面不擅长,但是也可以进行使用,效果比CNN略显逊色 对LSTM使用MNIST手写数字识别的思路图 undefined LSTM是在RNN的主线基础上增加了支线...batch_size在这里选取的是100,选择了一个隐藏层和128的神经元,对LSTM结构进行部署, MNIST长宽为28,选取一行28作为一份数据传入input_size,RNN是按照时间序列进行传值...(100, 128) 再进入全连接层后将hidden_size的128变为所需要的输出的10种图片的维度(100, 10) 对超参数的定义 #定义超参数 input_size = 28 time_step...(batch_size, time_step, hidden_size) out, _ = self.lstm(x, (h0, c0))#torch.Size([100, 28,

    1.4K00

    教程 | 使用MNIST数据集,在TensorFlow上实现基础LSTM网络

    选自GitHub 机器之心编译 参与:刘晓坤、路雪 本文介绍了如何在 TensorFlow 上实现基础 LSTM 网络的详细过程。作者选用了 MNIST 数据集,本文详细介绍了实现过程。...我们的目的 这篇博客的主要目的就是使读者熟悉在 TensorFlow 上实现基础 LSTM 网络的详细过程。 我们将选用 MNIST 作为数据集。.../", one_hot=True) MNIST 数据集 MNIST 数据集包括手写数字的图像和对应的标签。...MNIST 就正好提供了这样的机会。其中的输入数据是一个像素值的集合。我们可以轻易地将其格式化,将注意力集中在 LSTM 实现细节上。...每一个 num_units LSTM 单元都可以看作一个标准的 LSTM 单元: ?

    1.5K100

    基于CNN和LSTM的气象图降水预测示例

    今天我们来使用CNN和LSTM进行一个有趣的实验。 我们这里使用荷兰皇家气象研究所(也称为KNMI)提供的开放数据集和公共api,来获取数据集并且构建模型预测当地的降水量。...定义问题 最原始的也是最简单的预测视频中的下一帧的内容的方法是使用CNN和LSTM。我们是否可以将预测天气雷达的下一个捕获信号的问题简化为预测视频中的下一帧的问题呢(雷达的讯号也是图像序列)。...ConvLSTM2D层就像简单的LSTM层,但是它们的输入和循环转换卷积。ConvLSTM2D层在保留输入维度的同时,随着时间的推移执行卷积运算。...你可以把它想象成一个简单的卷积层,它的输出被压平,然后作为输入传递到一个简单的LSTM层。...batch_size, epochs=epochs, validation_data=(X_val, y_val), verbose=1, ) 结果 在训练模型之后,使用来自验证数据集的示例数据进行测试

    1.5K41

    基于CNN和LSTM的气象图降水预测示例

    今天我们来使用CNN和LSTM进行一个有趣的实验。 我们这里使用荷兰皇家气象研究所(也称为KNMI)提供的开放数据集和公共api,来获取数据集并且构建模型预测当地的降水量。...定义问题 最原始的也是最简单的预测视频中的下一帧的内容的方法是使用CNN和LSTM。我们是否可以将预测天气雷达的下一个捕获信号的问题简化为预测视频中的下一帧的问题呢(雷达的讯号也是图像序列)。...ConvLSTM2D层就像简单的LSTM层,但是它们的输入和循环转换卷积。ConvLSTM2D层在保留输入维度的同时,随着时间的推移执行卷积运算。...你可以把它想象成一个简单的卷积层,它的输出被压平,然后作为输入传递到一个简单的LSTM层。...batch_size, epochs=epochs, validation_data=(X_val, y_val), verbose=1, ) 结果 在训练模型之后,使用来自验证数据集的示例数据进行测试

    1.2K80

    使用PyTorch-LSTM进行单变量时间序列预测的示例教程

    对于这些例子中的每一个,都有事件发生的频率(每天、每周、每小时等)和事件发生的时间长度(一个月、一年、一天等)。 在本教程中,我们将使用PyTorch-LSTM进行深度学习时间序列预测。...我们的目标是接收一个值序列,预测该序列中的下一个值。最简单的方法是使用自回归模型,我们将专注于使用LSTM来解决这个问题。 数据准备 让我们看一个时间序列样本。...模型架构 我们将使用一个单独的LSTM层,然后是模型的回归部分的一些线性层,当然在它们之间还有dropout层。该模型将为每个训练输入输出单个值。...# set option for device selection # LSTM Layer self.lstm = nn.LSTM(n_features,...但是我们通过这个示例完整的介绍了时间序列预测的全部过程,我们可以通过尝试架构和参数的调整使模型变得得更好,预测得更准确。 本文只处理单变量时间序列,其中只有一个值序列。

    2.1K41

    caffe c++示例(mnist 多层感知机c++训练,测试)

    caffe训练网络模型一般直接使用的caffe.bin: caffe train -solver solver.prototxt,其实这个命令的本质也是调用c++的Solver....本文给出使用纯c++代码,使用mnist数据+多层感知机网络,训练数字分类问题。然后用C++调用训练好的模型测试分类。.../mnist_train_lmdb" batch_size: 64 backend: LMDB } } layer { name: "mnist" type: "Data"...当然原始的caffe的构建感觉还是比较复杂(主要是cmake),我这里仅仅使用cmake构建,而且简化点,当然最重要的是支持CLion直接运行调试(如果需要这个工程可以评论留下你的邮箱,我给你发送过去)...最后给出了使用纯C++结合多层感知机网络训练mnist的示例 内容如下: caffe c++示例(mnist 多层感知机c++训练,测试) 类似与caffe一样按照layer、solver、loss、net

    1K20

    使用PyTorch-LSTM进行单变量时间序列预测的示例教程

    来源:Deephub Imba 本文约4000字,建议阅读10分钟 在本教程中,我们将使用PyTorch-LSTM进行深度学习时间序列预测。 时间序列是指在一段时间内发生的任何可量化的度量或事件。...最简单的方法是使用自回归模型,我们将专注于使用LSTM来解决这个问题。 数据准备 让我们看一个时间序列样本。下图显示了2013年至2018年石油价格的一些数据。 这只是一个日期轴上单个数字序列的图。...模型架构 我们将使用一个单独的LSTM层,然后是模型的回归部分的一些线性层,当然在它们之间还有dropout层。...# set option for device selection # LSTM Layer self.lstm = nn.LSTM(n_features,...但是我们通过这个示例完整的介绍了时间序列预测的全部过程,我们可以通过尝试架构和参数的调整使模型变得得更好,预测得更准确。 本文只处理单变量时间序列,其中只有一个值序列。

    1.2K20

    TensorFlow实现流行机器学习算法的教程汇总(23)

    第二步:为TF新手准备的各个类型的案例、模型和数据集 初步了解:TFLearn TensorFlow 接下来的示例来自TFLearn,这是一个为 TensorFlow 提供了简化的接口的库。...里面有很多示例和预构建的运算和层。 使用教程:TFLearn 快速入门。通过一个具体的机器学习任务学习 TFLearn 基础。开发和训练一个深度神经网络分类器。...一种用于 MNIST 分类任务的多层感知实现 https://github.com/tflearn/tflearn/blob/master/examples/images/dnn.py 卷积网络(MNIST...用于分类 MNIST 数据集的一种卷积神经网络实现 https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_mnist.py.../tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py Seq2seq,seq2seq 循环网络的教学示例: https

    41900

    TensorFlow 2.0 代码实战专栏开篇

    上手系列☜ 更多TensorFlow 2.0精彩示例将持续更新…  写在前面的话 TensorFlow是谷歌2015年开源的通用高性能计算库。...前言 机器学习介绍 MNIST 数据集介绍 1. 介绍 Hello World。一个非常简单的示例,学习如何使用TensorFlow 2.0打印“ hello world”。 基础操作。...原始卷积神经网络的实现来对MNIST数字数据集进行分类。 递归神经网络(LSTM)。...使用TensorFlow 2.0“layers”和“model”API,构建递归神经网络(LSTM)对MNIST数字数据集进行分类。 双向递归神经网络(LSTM)。...使用TensorFlow 2.0“layers”和“model”API,构建双向递归神经网络(LSTM)对MNIST数字数据集进行分类。 动态递归神经网络(LSTM)。

    1.1K20

    ON-LSTM:能表示语言层次的LSTM

    ON-LSTM:能表示语言层次的LSTM 序列模型不完美,拥有层次才更佳 LSTM作为序列模型一直是自然语言处理的最佳选择之一,即使transformer出现了也依然无法撼动LSTM在NLP界的江湖地位...今天介绍的这篇论文,就设计了一个特殊的LSTM结构,使得模型可以将句子的层级结构给编码进去,从而增强了LSTM的表达能力。这篇论文也是ICLR2019的最佳论文之一。...[LSTM运算流程示意图,来源:苏剑林的博客:https://kexue.fm/archives/6621] 上面这个图是我看到过的画的最清晰的LSTM结构图了。...这样,就相当于给cell states加了一个顺序,从某种意义上讲也相当于是给LSTM的神经元加了顺序,因此作者称这种结构是Ordered-Neurons,对应的LSTM称为ON-LSTM。...目前我在一个长文本相似度的任务上测试过ON-LSTM的效果,仅仅是将LSTM替换成ON-LSTM就将测试集准确率提高了约5个百分点,还是比较明显的。所以推荐大家去试试。

    1.3K20
    领券