总体而言,Linux操作系统是一个强大、灵活且可定制的操作系统,广泛应用于服务器、嵌入式系统、超级计算机等各种领域。
Linux通过i节点表将文件的逻辑结构和物理结构进行转换。i节点是一个64字节长的表,表中包含了文件的相关信息,其中有文件的大小、文件所有者、文件的存取许可方式以及文件的类型等重要信息,在i节点表中最主要的内容是磁盘地址表。在磁盘地址表中有13个块号,文件将以块号在磁盘地址表中出现的顺序依次读取相应的块。Linux文件系统通过把i节点和文件名进行连接,当需要读取该文件时,文件系统在当前目录表中查询该文件名对应的项,由于此得到该文件相对应的i节点号,通过该i节点的磁盘地址表把分散存放的文件物理块连接成文件的逻辑结构。
CPU 资源被分成若干 时间片 , 每个进程分不同的时间 , 使用 CPU 时间片 , 这是 分时复用机制 ;
前言:在上一篇了解完进程状态后,我们简单了解了进程优先级,然后遗留了一点内容,本篇我们就来研究进程间的切换,来理解上篇提到的并发。如果对进程优先级还有没理解的地方可以先阅读:
基本介绍 Linux的进程调度器是内核中最重要的核心组件,它决定了一个进程合适获取CPU的时间以及占用CPU的时间。最佳情况下每个进程需要CPU执行指令的时间,如果需要保证进程之间的如何合理的分配CPU的指令执行时,进程的调度器需要具备如下的特性. Linux进程调度器采用类似于vfs的设计采用简单的两层结构模式,第一层是通用调度器,定义作为进程调度器的入口抽象层;第二层是调度器的具体实现,根据调度策略实现进程的调度的器的具体实现。第一层的使用了struct sched_class来描;第二层是具体的具
一般来说,在操作系统中会运行多个进程(几个到几千个不等),但一台计算机的 CPU 资源是有限的,如 8 核的 CPU 只能同时运行 8 个进程。那么当进程数大于 CPU 核心数时,操作系统是如何同时运行这些进程的呢?
这两天和同事讨论起linux进程调度的问题,比如进程统计、那些进程优先运行、怎么调度等,对此在这里和大家一同复习一下。先来说说怎么查看进程。在使用Linux操作系统的过程中,掌握如何查看和管理进程是系统管理的重要技能之一。进程管理不仅有助于监控系统资源的使用情况,还能帮助排查问题和优化系统性能。
本文是“Linux内核分析”系列文章的第一篇,会以内核的核心功能为出发点,描述Linux内核的整体架构,以及架构之下主要的软件子系统。之后,会介绍Linux内核源文件的目录结构,并和各个软件子系统对应。
Linux 内核的 " 进程调度 " 是按照 设计好的调度算法 安排的 , 该算法对应的功能模块 称为 " 调度器 " , 英文名称是 Scheduler ;
合理值:60-85%,如果在一个多用户系统中us+sy时间超过85%,则进程可能要花时间在运行队列中等待,响应时间和业务吞吐量会受损害;us过大,说明有用户进程占用很多cpu时间,需要进一步的分析其它软硬件因素;sy过大,说明系统管理方面花了很多时间,说明该系统中某个子系统产生了瓶颈,需要进一步分析其它软硬件因素。
先来先服务(FCFS)调度算法是一种最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。当在作业调度中采用该算法时,每次调度都是从后备作业队列中选择一个或多个最先进入该队列的作业,将它们调入内存,为它们分配资源、创建进程,然后放入就绪队列。在进程调度中采用FCFS算法时,则每次调度是从就绪队列中选择一个最先进入该队列的进程,为之分配处理机,使之投入运行。该进程一直运行到完成或发生某事件而阻塞后才放弃处理机。
Linux内核作为一个通用的操作系统(OS),需要兼顾各种各样类型的进程,包括实时进程、交互式进程、批处理进程等。而调度器(Scheduler)作为OS的核心组件——CPU时间的管理器,主要负责选择某些就绪的进程来执行。不同的调度器根据不同的方法挑选出最适合运行的进程。目前,在Linux内核中支持的调度器有CFS调度器、Realtime调度器、Deadline调度器和Idle调度器 。本篇将简单介绍CFS调度器的设计原理。
在操作系统运行过程中,由于CPU bound和I/O bound,进行进程的调度自然是常事。进行进程调度时,操作系统使用某些特定算法(如FIFO、SCBF、轮转法等)在进程队列中选出一个进程作为下一个运行的进程,调用schedule。进行进程调用的时机有以下几种: 中断处理过程(包括时钟中断、I/O中断、系统调用和异常)中,直接调用schedule(),或者返回用户态时根据need_resched标记调用schedule(); 内核线程可以直接调用schedule()进行进程切换,也可以在中断处理过程中进行
简介 Linux内核中进程调度的核心是选择哪个任务在哪个CPU上运行,解决各个进程之间能够公平的共享CPU资源,同时需要确认进程需要占用CPU时间,确定下一个需要运行的进程。负载均衡的核心是各个CPU之间空闲和繁忙不均衡,提供系统整体的计算吞吐量。 每个CPU上会运行一个进程的调度队列,在系统运行过程中可能会出现一个CPU上的任务多,另外一个CPU上的任务少的情况,这就需要将繁忙的CPU将任务转移到空间处理器上从而避免某些CPU负载不够的情况. 一个NUMA计算机可以拥有多个Node,一个Node可以有
" Linux 应用进程 " 可以根据 " Linux 内核 " 提供的 " 调度策略 " 选择 " 调度器 " ;
进程定义:所谓进程是由正文段(Text)、用户数据段(User Segment)以及系统数据段(System Segment)共同组成的一个执行环境。它代表程序的执行过程,是一个动态的实体。
进程是执行中的程序,这只是非正式的说法。进程不只是程序代码,程序代码称为文本段(代码段),还包括当前活动,通过程序计数器的值和处理器寄存器的内容来表示。此外,进程还包括进程堆栈段(临时数据、函数参数、局部变量、地址)和数据段(包括全全局变量。还可能包括堆(leap),是在进程运行期间动态分配内存。
我们首先要明白,线程和进程有什么关系?从概念上来讲,线程是进程的一部分,只是任务调度相关的部分,所以我们才说,“线程是调度的最小单位”。进程拥有着资源,这些资源不属于某一个特定线程,因为所有线程共享进程拥有的资源,所以我们才说,“进程是资源分配的最小单位”。需要特别说明的是,Linux在线程与进程的实现上与概念上有少许差别,这个等下再讨论。
1、Linux 下进程分为5种类别,分别是停止类、截止类、实时类、公平类、空闲类,
进程调度器是Linux内核中最重要的子系统。其目的是控制对计算机CPU的访问。这不仅包括用户进程的访问,还包括其他内核子系统的访问。
计算机硬件 上面一层是 Linux 内核 , 计算机的所有硬件操作都要经过内核 , 内核是 抽象资源操作 与 具体硬件操作细节 之间的接口 ;
从 开发角度 看 , 基于 过程 结构 , 开发人员可以参与 整体 Linux 内核的开发过程 , 这是一个 开放式的结构 , 允许任何开发人员对其进行 修改 ;
eBPF (Extended Berkeley Packet Filter) 是 Linux 内核上的一个强大的网络和性能分析工具。它允许开发者在内核运行时动态加载、更新和运行用户定义的代码。
进程优先级 Linux内核中进程优先级一般分为动态优先级和静态优先级,动态优先级是内核根据进程的nice值、IO密集行为或者计算密集行为以及等待时间等因素,设置给普通的进程;静态优先级是用户态应用设置给实时进程。在调度中静态优先级的进程优先级更高。 一般应用分为IO密集型和计算密集型;I/O密集型是进程执行I/O操作时候等待资源或者事件时候,数据读取到后恢复进程的运行,这样基本出于等待IO和运行之间进行交替,由于具有这样的特性,进程调度器通常会将短的CPU时间片分配给I/O密集型进程。计算密集型是进
进程要访问某种资源,进程通过一定的方式排队,确认享受资源的优先顺序。计算机中资源过少,所以进程访问某种资源时需要排队。
(1)进程状态转换的时刻:进程终止、进程睡眠,这些过程会主动调用调度程序进行进程调度。 (2)当前进程时间片用完时 (3)进程从中断、异常及系统调用返回到用户态时
内核程序临界区一般是用来访问某种内核数据结构的,比如进程的就绪队列(由各就绪进程PCB组成)
之前我写过一篇分析 O(1)调度算法 的文章:O(1)调度算法,而这篇主要分析 Linux 现在所使用的 完全公平调度算法。
在上一篇博客 【Linux 内核】进程优先级与调度策略 ① ( SCHED_FIFO 调度策略 | SCHED_RR 调度策略 | 进程优先级 ) 中 , 简单介绍了 " 进程调度策略 " 与 " 进程优先级 " 概念 , 本篇博客开始继续介绍进程调度的代码细节 ;
每个程序都会收到一张环境表,环境表是一个字符指针数组,每个指针指向一个以’\0’结尾的环境字符串
对于服务器系统来说,上下文切换也是影响系统性能的一个重要因素。深入理解上下文切换的原理,有利于我们做好性能优化工作。今天我将带大家了解下上下文切换的几种情形,以及其背后发生切换的具体信息,接着介绍一些监测上下文切换指标的工具,最后总结一些上下文切换异常可能得场景。
之前我们只是介绍了进程管理的几个基本命令,但关于进程的具体管理细节,我们将在本章详细介绍。
进程管理 : 包括 进程创建 , 销毁 , 线程组管理 , 内核线程管理 , 队列等待 ;
但凡懂Linux内核的,都知道Linux内核的CFS进程调度算法,无论是从2.6.23将其初引入时的论文,还是各类源码分析,文章,以及Linux内核专门的图书,都给人这样一种感觉,即 CFS调度器是革命性的,它将彻底改变进程调度算法。 预期中,人们期待它会带来令人惊艳的效果。
进程调度决定了将哪个进程进行执行,以及执行的时间。操作系统进行合理的进程调度,使得资源得到最大化的利用。
笔者作为通信工程的学生,在学习这门课之前虽然会用Linux完成一些简单的任务,但却从没有接触过这个操作系统的内在之美。之前学完C语言的时候,就想认识这个神秘的Linux内核了,可是一直在数学建模和各种活动中抽不开身,学习的过程也是不得其法。直到我看到孟宁老师的《Linux内核分析》这门课时,我想我大概可以在二十年后吹牛了:“当年我大二,读Linux内核源码的时候.....” 只是在学习的过程中,没有找到合适的参考书,导致复习有些困难。到了第六、七周早早的把视频看完,周末想写博客的时候却记不起来了。与其参考别
我们在使用电脑的时候,比如打开一个视频剪辑器,一个文本编辑器,可以认为它们都是一个进程。假如CPU是单核的,那么在同一时间只能运行一个进程,但是给我们的感觉是视频剪辑器和文本编辑器好像是同时运行的,也就是视频剪辑器在剪辑视频的时候,我们同时可以使用文本编辑器,这是怎么实现的呢?
cordon、drain和delete三个命令都会使node停止被调度,后期创建的pod不会继续被调度到该节点上,但操作的暴力程度却不一样。
进程切换的实质是回收当前运行进程对 CPU 的控制权,并将 CPU 控制权转交给新调度的就绪进程.
所谓假死现象,是指 Linux 内核 Alive,但是其上的某个或所有操作的响应变得很慢的现象。
我在多年的工程生涯中发现很多工程师碰到一个共性的问题:Linux工程师很多,甚至有很多有多年工作经验,但是对一些关键概念的理解非常模糊,比如不理解CPU、内存资源等的真正分布,具体的工作机制,这使得他们对很多问题的分析都摸不到方向。比如进程的调度延时是多少?Linux能否硬实时?多核下多线程如何执行?系统的内存究竟耗到哪里去了?我写的应用程序究竟耗了多少内存?什么是内存泄漏,如何判定内存是否真的泄漏?CPU速度、内存大小和系统性能的关联究竟是什么?内存和I/O存在着怎样的千丝万缕的联系?
Linux是一个多用户多任务的操作系统。多用户是指多个用户可以在同一时间使用同一个linux系统;多任务是指在Linux下可以同时执行多个任务,更详细的说,linux采用了分时管理的方法,所有的任务都放在一个队列中,操作系统根据每个任务的优先级为每个任务分配合适的时间片,每个时间片很短,用户根本感觉不到是多个任务在运行,从而使所有的任务共同分享系统资源,因此linux可以在一个任务还未执行完时,暂时挂起此任务,又去执行另一个任务,过一段时间以后再回来处理这个任务,直到这个任务完成,才从任务队列中去除。这就是多任务的概念。 上面说的是单CPU多任务操作系统的情形,在这种环境下,虽然系统可以运行多个任务,但是在某一个时间点,CPU只能执行一个进程,而在多CPU多任务的操作系统下,由于有多个CPU,所以在某个时间点上,可以有多个进程同时运行。 进程的的基本定义是:在自身的虚拟地址空间运行的一个独立的程序,从操作系统的角度来看,所有在系统上运行的东西,都可以称为一个进程。
在计算机操作系统中,进程是进行资源分配和调度的基本单位,同时每个进程之内也可以存在多个线程。那么在Android系统(Linux Kernel)中,进程是如何去抢占资源,线程又是如何根据优先级切换呢,本文将尝试剖析这个问题,研究nice在Linux以及Android系统中的应用。
在上一篇文章中,我们知道,到 Linux 2.6.23 版本后,linux 实际上维护了一组调度器来实现不同的调度需要,它们被分为了四层:
进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一。操作系统的其他所有内容都是围绕进程的概念展开的
文中的很多图片来源我考研时看的网课,B 站上应该还能找到,王道考研出品的操作系统系列,各位可以去看看,适用于考试,不太适用于春招秋招,因为知识点讲的太细,边边角角都会讲到,各位可以挑几个章节去看。全文脉络思维导图如下:
领取专属 10元无门槛券
手把手带您无忧上云