首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

HOG + SVM实现没有找到正确的面数

HOG (Histogram of Oriented Gradients) + SVM (Support Vector Machine) 是一种经典的目标检测方法。下面给出一个完善且全面的答案:

HOG+SVM是一种常见的目标检测方法,通过提取图像中的梯度信息来描述图像的特征,然后利用支持向量机对这些特征进行分类,从而实现目标检测的功能。

具体来说,HOG是一种特征描述方法,它将图像划分成小的局部区域,并计算每个区域内的梯度方向直方图。通过统计梯度的分布情况,HOG能够有效地描述图像的纹理和边缘信息。这些特征能够对目标物体进行有效的区分。

SVM是一种机器学习算法,它能够通过训练集学习到一个分类模型,然后利用该模型对新样本进行分类。在HOG+SVM中,SVM用于对提取的HOG特征进行分类,判断图像中是否存在目标物体。

HOG+SVM在目标检测领域具有广泛的应用。例如,人脸检测、行人检测、车辆检测等都可以利用HOG+SVM方法实现。它们在图像处理、视频监控、自动驾驶等领域都有着重要的应用价值。

对于腾讯云的相关产品,可以考虑以下几个方向:

  1. 云计算服务:腾讯云提供了弹性云服务器(Elastic Cloud Server,ECS)和云函数(Serverless Cloud Function,SCF)等产品,可以用来搭建和部署HOG+SVM模型所需的计算环境。
  2. 存储服务:腾讯云对象存储(Cloud Object Storage,COS)可以用来存储图像数据和训练模型所需的数据集。
  3. 人工智能服务:腾讯云人工智能开放平台(AI Open Platform)提供了图像识别、人脸识别等相关服务,可以与HOG+SVM相结合,实现更丰富的功能。

以下是相关腾讯云产品的介绍链接:

  1. 弹性云服务器(ECS):https://cloud.tencent.com/product/cvm
  2. 云函数(SCF):https://cloud.tencent.com/product/scf
  3. 对象存储(COS):https://cloud.tencent.com/product/cos
  4. 人工智能开放平台(AI Open Platform):https://cloud.tencent.com/product/ai

希望以上内容能够满足您的需求。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

基于支持向量机的手写数字识别详解(MATLAB GUI代码,提供手写板)

摘要:本文详细介绍如何利用MATLAB实现手写数字的识别,其中特征提取过程采用方向梯度直方图(HOG)特征,分类过程采用性能优异的支持向量机(SVM)算法,训练测试数据集为学术及工程上常用的MNIST手写数字数据集,博主为SVM设置了合适的核函数,最终的测试准确率达99%的较高水平。根据训练得到的模型,利用MATLAB GUI工具设计了可以手写输入或读取图片进行识别的系统界面,同时可视化图片处理过程及识别结果。本套代码集成了众多机器学习的基础技术,适用性极强(用户可修改图片文件夹实现自定义数据集训练),相信会是一个非常好的学习Demo。本博文目录如下:

05
  • Histograms of Oriented Gradients for Human Detection

    以基于线性SVM的人体检测为例,研究了鲁棒视觉目标识别的特征集问题。在回顾了现有的基于边缘和梯度的描述符之后,我们通过实验证明了方向梯度(HOG)描述符的直方图网格在人类检测方面明显优于现有的特征集。我们研究了计算的各个阶段对性能的影响,得出结论:在重叠描述符块中,细尺度梯度、细方向边距、相对粗的空间边距和高质量的局部对比度归一化都是获得良好结果的重要因素。新方法在原有MIT行人数据库的基础上实现了近乎完美的分离,因此我们引入了一个更具挑战性的数据集,其中包含1800多张带注释的人类图像,具有大范围的姿态变化和背景。

    04

    A Discriminatively Trained, Multiscale, Deformable Part Model

    本文提出了一种训练有素、多尺度、可变形的目标检测零件模型。在2006年PASCAL人员检测挑战赛中,我们的系统在平均精度上比最佳性能提高了两倍。在2007年的挑战赛中,它在20个类别中的10个项目中都取得了优异的成绩。该系统严重依赖于可变形部件。虽然可变形部件模型已经变得相当流行,但它们的价值还没有在PASCAL挑战等困难的基准测试中得到证明。我们的系统还严重依赖于新方法的甄别培训。我们将边缘敏感的数据挖掘方法与一种形式主义相结合,我们称之为潜在支持向量机。隐式支持向量机与隐式CRF一样,存在非凸训练问题。然而,潜在SVM是半凸的,一旦为正例指定了潜在信息,训练问题就变成了凸的。我们相信,我们的训练方法最终将使更多的潜在信息的有效利用成为可能,如层次(语法)模型和涉及潜在三维姿态的模型。

    04

    [Intensive Reading]目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作

    目标检测系列: 目标检测(object detection)系列(一) R-CNN:CNN目标检测的开山之作 目标检测(object detection)系列(二) SPP-Net:让卷积计算可以共享 目标检测(object detection)系列(三) Fast R-CNN:end-to-end的愉快训练 目标检测(object detection)系列(四) Faster R-CNN:有RPN的Fast R-CNN 目标检测(object detection)系列(五) YOLO:目标检测的另一种打开方式 目标检测(object detection)系列(六) SSD:兼顾效率和准确性 目标检测(object detection)系列(七) R-FCN:位置敏感的Faster R-CNN 目标检测(object detection)系列(八) YOLOv2:更好,更快,更强 目标检测(object detection)系列(九) YOLOv3:取百家所长成一家之言 目标检测(object detection)系列(十) FPN:用特征金字塔引入多尺度 目标检测(object detection)系列(十一) RetinaNet:one-stage检测器巅峰之作 目标检测(object detection)系列(十二) CornerNet:anchor free的开端 目标检测(object detection)系列(十三) CenterNet:no Anchor,no NMS 目标检测(object detection)系列(十四)FCOS:用图像分割处理目标检测

    03
    领券