首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【AI 语音】实时语音交互优化全解析:从 RTC 技术到双讲处理

然而,背景噪声和双讲现象(双方同时讲话时的语音混合)会影响 AI 处理效果,因此需要优化 RTC 技术,以提升语音交互的稳定性。...语音合成(TTS)TTS 负责将文本转换为自然流畅的语音,应用于智能助手等场景。主流 TTS 技术包括 Google TTS、Amazon Polly 和 FastSpeech 2。...结合深度学习模型,如 RNNoise,用于去除复杂背景噪声。解决双讲现象双讲现象会导致双方语音重叠,影响语音识别准确性。...未来展望未来,随着 AI 和 RTC 技术的进步,我们可以期待:更自然的语音合成,增强用户交互体验。更强的背景噪声处理,适用于复杂环境。更智能的双讲分离,提高多人语音交互的准确性。...参考资料WebRTC 官方文档:https://webrtc.org/Google Speech-to-Text API:https://cloud.google.com/speech-to-textFastSpeech

26210
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Google 的 Serverless 产品对比:Cloud Run、Cloud Functions、App Engine

    都是 Google Cloud 提供的 Serverless 平台,但是它们之间有细微差别,在某些情况下某个平台可能会比其他平台更受欢迎。...Google Cloud Run:Serverless 容器 Cloud Run 由 Knative 构建, 是 Google 最新的 Serverless 产品。...有了这种灵活性,Cloud Run 的用户可以使用他们已经用来在 Google Cloud 上打包和运行容器的工具轻松地运行 Serverless 工作负载,或者将有状态和无状态工作负载一起部署。...Google Cloud Functions: Serverless 函数 尽管 Cloud Run 接受容器并通过 HTTP 请求来调用,但 Cloud Functions 仍然是 Google 的事件驱动型...Google 支持编写 Cloud Functions,因此也可以通过 HTTP 请求调用它们,或将其设置为根据后台事件触发。

    3.4K00

    Google停用MapReduce,高调发布Cloud Dataflow

    Google已经停用自己研发的,部署在服务器上,用以分析数据的MapReduce,转而支持一个新的超大规模云分析系统Cloud Dataflow。...Cloud DataFlow,将作为一项服务提供给使用它们云服务的开发者,这些服务并没有MapReduce的扩展限制。 “Cloud Dataflow是这近十年分析经验的成果。”...Hölzle在展示会上也宣布谷歌云平台上其他一些新的服务: Cloud Save是一个API,它使应用程序能够在云中或其他地方保存单个用户的数据而不需要任何服务器端的编码。...Cloud Debugging简化了筛选出部署在云端的多台服务器中的软件缺陷的过程。 Cloud Tracing提供了不同群体(数据库服务调用,例如等待时间)的延时统计数据以及分析报告。...Cloud Monitoring是一款与Stackdriver(谷歌5月份收购的一个云监控初创公司)集成的智能监控系统。

    1.1K60

    使用Google Cloud Platform进行资产跟踪

    然后,设备消息将被解压缩并放置在默认队列中,以便使用Google Pub Sub处理。Pub Sub是一个消息队列服务,可以处理大量消息,并且具有容错能力。...为此,我们选择Google的Firebase数据库,它是一个简单但功能强大的键值存储,而且存储速度很快。...为了解决这些问题,我们会将Gary的数据路由到第三种来源,即Google Cloud Functions。Cloud Functions是一种简单、可扩展的功能,可作为服务解决方案。...Cloud Functions可以通过简单的HTTP请求触发,或者在这种情况下,可以收听Pub Sub主题。...他还与Leverege合作,开发了一种使用Google Cloud AutoML的机器学习算法,以根据客户的骑车行为模式来估算客户租自行车的时间。

    2.5K00

    Google Cloud Spanner的实践经验

    Cloud Spanner是Google Megastore系统的继承者,Spanner表现出远超前辈的能力。...Cloud Spanner数据库是全球范围分布式的关系型/事务数据库,并且Google承诺Cloud Spanner拥有高吞吐量、低延迟和99.999%的高可用性。...接触Cloud Spanner 第一次接触到Google Cloud Spanner是因为客户对于新技术的追求与尝试,将我们基本完成的APIs从原先的Google Cloud Sql迁移到Cloud Spanner...Cloud Spanner能够实现外部一致性得益于TrueTime的功能特性。TureTime是Google为所有Google服务提供的高可用分布式的时钟。该时钟为应用提供单调递增的时间戳。...Spanner所有特性:https://cloud.google.com/spanner#section-8 Cloud Spanner数据类型:https://cloud.google.com/spanner

    1.5K10

    google cloud :穷人也能玩深度学习

    google cloud,只要1美元,只要1美元,300美元赠金带回家!365天免费使用,让你轻松入门深度学习!...使用google cloud有个好处就是完全不占用本地电脑资源,需要跑的时候扔个命令让google cloud跑就是,而且不阻塞自己的其它任何工作。跑的过程中生成的数据全部都会存储在存储分区中。...3.下载google cloud sdk并解压 4.安装 sh ./google-cloud-sdk/install.sh 5.配置ml-engine。...a.创建一个新的云平台项目 https://console.cloud.google.com/cloud-resource-manager b.启用付费 https://support.google.com...不过最好还是祝愿看到文章的你我,到那个时候能够有钱自己装机或者直接继续享受google cloud服务。 参考资料:https://cloud.google.com/ml-engine/docs/

    18.9K11

    Google Duo采用WaveNetEQ填补语音间隙

    Google Duo的WaveNetEQ解决方案可以在使用自回归网络保证音频连续性的同时,使用调节网络对长期特征(例如语音特性)进行建模。...为了确保模型在众多用户中的鲁棒性,Google对WaveNetEQ进行了语音数据集的训练,该语音数据集中包含100多位使用48种不同语言的演讲者。...为了确保WaveNetEQ能够处理嘈杂的环境,例如在火车站或自助餐厅接听电话这样的情形,Google通过将数据与各种背景噪声混合来增强数据。...尽管Google的模型学习了如何逼真地延续语音,但这仅在短期内有效——它可以完成一个音节,但不能预测单词本身。相反,对于更长的数据包的丢失,Google会逐渐淡出直到该模型在120毫秒后保持静音。...为了进一步确保该模型不会产生错误的音节,Google使用了Google Cloud语音转文本API对WaveNetEQ和NetEQ的样本进行了评估,并发现单词错误率没有显著差异(即抄录口头语音时产生的错误文本数量

    89620

    google cloud--穷人也能玩深度学习

    google cloud,只要1美元,只要1美元,300美元赠金带回家!365天免费使用,让你轻松入门深度学习!...使用google cloud有个好处就是完全不占用本地电脑资源,需要跑的时候扔个命令让google cloud跑就是,而且不阻塞自己的其它任何工作。跑的过程中生成的数据全部都会存储在存储分区中。 ?...3.下载google cloud sdk并解压 4.安装 sh ./google-cloud-sdk/install.sh  5.配置ml-engine。...a.创建一个新的云平台项目  https://console.cloud.google.com/cloud-resource-manager b.启用付费 https://support.google.com...不过最好还是祝愿看到文章的你我,到那个时候能够有钱自己装机或者直接继续享受google cloud服务。 参考资料 https://cloud.google.com/ml-engine/docs/

    3K100

    Tensorflow官方语音识别入门教程 | 附Google新语音指令数据集

    李林 编译整理 量子位 报道 | 公众号 QbitAI Google今天推出了一个语音指令数据集,其中包含30个词的65000条语音,wav格式,每条长度为一秒钟。...这个数据集由Google TensorFlow团队和AIY团队共同推出的,AIY就是之前推出树莓派DIY智能音箱的那个团队: ?...语音识别教程 Google还配合这个数据集,推出了一份TensorFlow教程,教你训练一个简单的语音识别网络,能识别10个词,就像是语音识别领域的MNIST(手写数字识别数据集)。...虽然这份教程和数据集都比真实场景简化了太多,但能帮用户建立起对语音识别技术的基本理解,很适合初学者使用。...鉴于这是个练习用的小数据集,有时候也可能识别不是那么准…… 另外,Google同时还开源了制作这个数据集的工具:https://github.com/petewarden/open-speech-recording

    3.3K80
    领券