首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

C++中互斥锁和临界区之间的性能差异

互斥锁和临界区是多线程编程中用于保护共享资源的同步机制。互斥锁是一种常见的同步方式,它可以确保同一时间只有一个线程访问共享资源。临界区是指需要互斥锁保护的代码段,它通常包含对共享资源的访问。

在C++中,互斥锁和临界区之间的性能差异主要体现在以下几个方面:

  1. 开销:互斥锁的开销主要包括创建、锁定、解锁和销毁等操作。互斥锁的开销通常较大,因为它需要调用操作系统的系统调用来实现线程间的同步。而临界区的开销较小,因为它只需要在编译器的层面上实现同步,不需要调用操作系统的系统调用。
  2. 粒度:互斥锁的粒度较粗,因为它保护的是整个共享资源。而临界区的粒度较细,因为它只保护需要同步的代码段。细粒度的同步可以提高并发性能,减少线程间的等待时间。
  3. 可靠性:互斥锁的可靠性较高,因为它可以确保同一时间只有一个线程访问共享资源,从而避免了竞争条件的发生。而临界区的可靠性较低,因为它只能保证在同一时间只有一个线程访问临界区,但不能保证其他线程不会访问共享资源。

总之,互斥锁和临界区在C++中具有不同的性能特点,开发者需要根据具体的应用场景和需求来选择合适的同步机制。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【地铁上的面试题】--基础部分--操作系统--进程与线程

    进程与线程是操作系统中重要的概念,用于实现并发执行和资源管理。它们在计算机系统中扮演着不同的角色,并具有各自的特点。 进程是程序在执行过程中的一个实体,是资源分配的基本单位。一个进程可以包含多个线程,每个线程共享进程的资源,包括内存、文件句柄、打开的文件等。每个进程都有自己的地址空间和独立的执行状态,通过操作系统进行管理和调度。进程之间相互独立,彼此隔离,拥有自己的地址空间,需要通过进程间通信来实现数据共享和协作。 线程是进程中的一个执行单元,是 CPU 调度的基本单位。一个进程可以包含多个线程,这些线程可以并发执行,共享进程的资源。线程之间共享同一进程的地址空间,可以直接访问进程的全局变量和堆内存,减少了进程间通信的开销。由于线程之间共享资源,所以需要采取同步机制来避免数据竞争和冲突。 进程与线程的基本特点如下:

    03

    Go 语言并发编程系列(十)—— sync 包系列:互斥锁和读写锁

    我们前面反复强调,在 Go 语言并发编程中,倡导「使用通信共享内存,不要使用共享内存通信」,而这个通信的媒介就是我们前面花大量篇幅介绍的通道(Channel),通道是线程安全的,不需要考虑数据冲突问题,面对并发问题,我们始终应该优先考虑使用通道,它是 first class 级别的,但是纵使有主角光环加持,通道也不是万能的,它也需要配角,这也是共享内存存在的价值,其他语言中主流的并发编程都是通过共享内存实现的,共享内存必然涉及并发过程中的共享数据冲突问题,而为了解决数据冲突问题,Go 语言沿袭了传统的并发编程解决方案 —— 锁机制,这些锁都位于 sync 包中。

    02

    【Linux】多线程 --- POSIX信号量+懒汉模式的线程池+其他常见锁

    1. 在先前我们的生产消费模型代码中,一个线程如果想要操作临界资源,也就是对临界资源做修改的时候,必须临界资源是满足条件的才能修改,否则是无法做出修改的,比如下面的push接口,当队列满的时候,此时我们称临界资源条件不就绪,无法继续push,那么线程就应该去cond的队列中进行wait,如果此时队列没满,也就是临界资源条件就绪了,那么就可以继续push,调用_q的push接口。 但是通过代码你可以看到,如果我们想要判断临界资源是否就绪,是不是必须先加锁然后再判断?因为本身判断临界资源,其实就是在访问临界资源,既然要访问临界资源,你需不需要加锁呢?当然是需要的!因为临界资源需要被保护! 所以我们的代码就呈现下面这种样子,由于我们无法事前得知临界资源的状态是否就绪,所以我们必须要先加锁,然后手动判断临界资源的就绪状态,通过状态进一步判断是等待,还是直接对临界资源进行操作。 但如果我们能事前得知,那就不需要加锁了,因为我们提前已经知道了临界资源的就绪状态了,不再需要手动判断临界资源的状态。所以如果我们有一把计数器,这个计数器来表示临界资源中小块儿资源的数目,比如队列中的每个空间就是小块儿资源,当线程想要对临界资源做访问的时候,先去申请这个计数器,如果这个计数器确实大于0,那不就说明当前队列是有空余的位置吗?那就可以直接向队列中push数据。如果这个计数器等于0,那就说明当前队列没有空余位置了,你不能向队列中push数据了,而应该阻塞等待着,等待计数器重新大于0的时候,你才能继续向队列中push数据。

    04

    Linux同步机制 - 基本概念(死锁,活锁,饿死,优先级反转,护航现象)

    死锁(deadlock) 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。 虽然进程在运行过程中,可能发生死锁,但死锁的发生也必须具备一定的条件,死锁的发生必须具备以下四个必要条件。 1)互斥条件:指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。 2)请求和保持条

    010

    Go 语言并发编程系列(十二)—— sync 包系列:原子操作

    我们在前两篇教程中讨论了互斥锁、读写锁以及基于它们的条件变量。互斥锁是一个同步工具,它可以保证每一时刻进入临界区的协程只有一个;读写锁对共享资源的写操作和读操作区别看待,并消除了读操作之间的互斥;条件变量主要用于协调想要访问共享资源的那些线程,当共享资源的状态发生变化时,它可以被用来通知被互斥锁阻塞的线程,它既可以基于互斥锁,也可以基于读写锁(当然了,读写锁也是互斥锁,是对后者的一种扩展)。通过对互斥锁的合理使用,我们可以使一个 Go 协程在执行临界区中的代码时,不被其他的协程打扰,实现串行执行,不过,虽然不会被打扰,但是它仍然可能会被中断(interruption)。

    02
    领券