首页
学习
活动
专区
圈层
工具
发布

干货 | Bokeh交互式数据可视化快速入门

Bokeh简介 Bokeh是一款交互式可视化库,在浏览器上进行展示。 Bokeh可以通过Python(或其它语言),快速便捷地为大型流数据集提供优雅简洁的高性能交互式图表。...安装 在python中有多种安装Bokeh的方法,这里建议最简单的方法是使用Anaconda Python发行版,然后在命令行下输入以下命令: conda install bokeh 这里会安装Bokeh...开始绘图 Bokeh是一个大型库,具有非常多的功能,这里不细讲具体函数方法,只通过一些案例来展示Bokeh的使用流程和可视化界面。...将python列表中的数据绘制成线图非常简单,而且图表是交互式的,能够缩放、平移、保存等其他功能。...如果你使用的是notebook环境,Bokeh可以在notebook中直接显示交互式图表,只要将output_file()函数替换为output_notebook()函数。

2.8K10

交互式数据可视化,在Python中用Bokeh实现

什么是BokehBokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。...Bokeh可以像D3.js那样创建简洁漂亮的交互式可视化效果,即使是非常大型的或是流数据集也可以进行高效互动。Bokeh可以帮助所有人快速方便地创建互动式的图表、控制面板以及数据应用程序。...程序 Bokeh可以转换写在其它库(如matplotlib, seaborn和ggplot)中的可视化 Bokeh能灵活地将交互式应用、布局和不同样式选择用于可视化 Bokeh面临的挑战: 与任何即将到来的开源库一样...与D3.js相比,Bokeh的可视化选项相对较少。因此,短期内Bokeh无法挑战D3.js的霸主地位。 综合Bokeh的优点及其面临的挑战,Bokeh是当前用于快速开发原型产品的理想工具。...在Bokeh服务器上进行可视化绘图有多个优点: 图表有更多的受众 可对大数据集进行交互式可视化 可根据数据流自动更新图表 创建控制面板和应用程序 开始在Bokeh服务器上绘图之前,我先运行了“bokeh-server

3.9K110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    干货 | Bokeh交互式数据可视化快速入门

    Bokeh简介 Bokeh是一款交互式可视化库,在浏览器上进行展示。 Bokeh可以通过Python(或其它语言),快速便捷地为大型流数据集提供优雅简洁的高性能交互式图表。...安装 在python中有多种安装Bokeh的方法,这里建议最简单的方法是使用Anaconda Python发行版,然后在命令行下输入以下命令: conda install bokeh 这里会安装Bokeh...开始绘图 Bokeh是一个大型库,具有非常多的功能,这里不细讲具体函数方法,只通过一些案例来展示Bokeh的使用流程和可视化界面。...将python列表中的数据绘制成线图非常简单,而且图表是交互式的,能够缩放、平移、保存等其他功能。...如果你使用的是notebook环境,Bokeh可以在notebook中直接显示交互式图表,只要将output_file()函数替换为output_notebook()函数。

    2.1K10

    Bokeh,一个超强交互式 Python 可视化库!

    好在两者的绘图语法、所使用数据的结构都相差不大,使得两者可以兼顾,而基于前端交互式的可视化绘制,Python 可能比较灵活方便些,毕竟语法较为简单嘛,好了,不多说了,今天这篇推文,我们就介绍一下 Python...Bokeh 可视化作品欣赏 bar_colormapped from bokeh.io import output_file, show from bokeh.models import ColumnDataSource...from bokeh.palettes import Spectral6 from bokeh.plotting import figure from bokeh.transform import factor_cmap...bar_colormapped hexbin import numpy as np from bokeh.io import output_file, show from bokeh.models import...库绘制的可视化作品,体验了 Python 用于绘制交互式可视化作品放入方便性,还是那句话,适合自己的才是最好的,不要纠结所使用的工具哈,让我们一起探索数据可视化的魅力吧~~ 参考来源:https://

    1.6K10

    如何在Python中用Bokeh实现交互式数据可视化?

    在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。 什么是Bokeh?...Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。正如下图所示,它说明了Bokeh如何将数据展示到一个Web浏览器上的流程。 ?...Bokeh可以像D3.js那样创建简洁漂亮的交互式可视化效果,即使是非常大型的或是流数据集也可以进行高效互动。Bokeh可以帮助所有人快速方便地创建互动式的图表、控制面板以及数据应用程序。...程序 Bokeh可以转换写在其它库(如matplotlib, seaborn和ggplot)中的可视化 Bokeh能灵活地将交互式应用、布局和不同样式选择用于可视化 Bokeh面临的挑战: 与任何即将到来的开源库一样...在Bokeh服务器上进行可视化绘图有多个优点: 图表有更多的受众 可对大数据集进行交互式可视化 可根据数据流自动更新图表 创建控制面板和应用程序 开始在Bokeh服务器上绘图之前,我先运行了“bokeh-server

    3.8K70

    绘图技巧 |Bokeh超强交互式Python可视化库作品分享

    好在两者的绘图语法、所使用数据的结构都相差不大,使得两者可以兼顾,而基于前端交互式的可视化绘制,Python可能比较灵活方便些,毕竟语法较为简单嘛,好了,不多说了,今天这篇推文,我们就介绍一下Python...Bokeh 可视化作品欣赏 bar_colormapped from bokeh.io import output_file, show from bokeh.models import ColumnDataSource...from bokeh.palettes import Spectral6 from bokeh.plotting import figure from bokeh.transform import factor_cmap...import output_file, show from bokeh.models import HoverTool from bokeh.plotting import figure n = 500...还提供大量的可视化APP应用,具体内容,感兴趣的小伙伴可自行搜索哈~~ 总结 这一期我们分享了Python-Bokeh库绘制的可视化作品,体验了Python用于绘制交互式可视化作品放入方便性,还是那句话

    85010

    手把手|在Python中用Bokeh实现交互式数据可视化

    ◆ ◆ ◆ 什么是Bokeh Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。...Bokeh可以像D3.js那样创建简洁漂亮的交互式可视化效果,即使是非常大型的或是流数据集也可以进行高效互动。Bokeh可以帮助所有人快速方便地创建互动式的图表、控制面板以及数据应用程序。...Bokeh的优势: Bokeh允许你通过简单的指令就可以快速创建复杂的统计图, Bokeh提供到各种媒体,如HTML,Notebook文档和服务器的输出 ·我们也可以将Bokeh可视化嵌入flask...和django程序 Bokeh可以转换写在其它库(如matplotlib, seaborn和ggplot)中的可视化 ·Bokeh能灵活地将交互式应用、布局和不同样式选择用于可视化 综合Bokeh的优点及其面临的挑战...在Bokeh服务器上进行可视化绘图有多个优点: 图表有更多的受众 可对大数据集进行交互式可视化 可根据数据流自动更新图表 创建控制面板和应用程序 开始在Bokeh服务器上绘图之前,我先运行了“bokeh-server

    11.5K50

    利用Bokeh进行Python中交互式与实时数据可视化的探索

    而 Bokeh 是其中一个非常适合创建交互式和动态可视化的库。...我们将以一个动态更新的折线图为例,通过实际代码演示 Bokeh 的强大功能。什么是 Bokeh?Bokeh 是一个用于创建交互式可视化的 Python 库。...何时使用 Bokeh 而非 Matplotlib:需要在 Web 上展示交互式图表时,Bokeh 是更好的选择。需要实时更新和动态数据流时,Bokeh 更加适用。...Bokeh 与 PlotlyPlotly 是另一款强大的 Python 可视化库,专注于交互式图表生成,并且拥有广泛的支持社区。...与 Bokeh 相比,Plotly 的主要区别在于:图表类型: Plotly 支持 3D 图表、地图以及复杂的统计图表,而 Bokeh 则更专注于 2D 图表和交互式展示。

    1.4K20

    python中Bokeh模块介绍

    Bokeh是一个用于Python的交互式可视化库,它提供了丰富的绘图工具和灵活的界面,使得数据可视化变得简单而高效。...Bokeh的核心优势在于其能够生成交互式的Web图形,这意味着用户可以直接在网页上操作图表,无需依赖额外的软件。此外,Bokeh还支持大数据集的快速渲染,这对于处理海量数据非常有用。...应用与发展趋势 Bokeh在数据可视化领域的应用非常广泛,尤其在需要交互式分析和探索性数据分析的场景中表现出色。随着大数据和人工智能的快速发展,Bokeh这样的交互式可视化工具将越来越受欢迎。...3、交互式折线图示例 from bokeh.plotting import figure, show from bokeh.models import ColumnDataSource, HoverTool...总结 Bokeh是一个功能强大的交互式可视化库,它提供了丰富的绘图工具和灵活的界面,使得数据可视化变得简单而高效。无论是散点图、直方图还是交互式的折线图,Bokeh都能轻松应对。

    12310

    如何使用Bokeh实现大规模数据可视化的最佳实践

    Bokeh 是一个强大的 Python 可视化库,它提供了丰富的功能,使得在浏览器中呈现交互式图表和大规模数据集变得轻而易举。...通过遵循这些最佳实践,你可以更加高效地使用 Bokeh 实现大规模数据可视化,并创建出令人印象深刻的交互式图表。...实现交互式可视化除了静态图表之外,Bokeh 还提供了丰富的交互式功能,使用户能够动态地探索数据并进行更深入的分析。...部署到 Bokeh 服务器Bokeh 提供了一个强大的服务器端框架,可以让你将交互式可视化应用部署到 Web 服务器上,从而与其他用户共享和访问。...接着,我们介绍了如何使用 Bokeh 实现交互式可视化,通过示例代码展示了如何添加滑动条来实现动态数据交互。此外,我们还学习了如何将交互式应用部署到 Bokeh 服务器上,并实现了实时数据更新的示例。

    72110

    利用 Bokeh 在 Python 中创建动态数据可视化

    Bokeh 是一个用于创建交互式和动态数据可视化的强大工具,它可以帮助你在 Python 中展示数据的变化趋势、模式和关联性。...Bokeh 简介Bokeh 是一个开源的 Python 可视化库,它允许用户创建交互式的图表、地图和仪表板。...通过 Bokeh,你可以创建更复杂的动态数据可视化,包括交互式控件、动画效果和更多可视化元素,以满足不同需求。希望本文能帮助你入门 Bokeh,更好地利用 Python 进行数据可视化工作。...通过 Bokeh,你可以根据具体需求添加更多的交互式控件和自定义动画效果,以创建更丰富、更有趣的动态数据可视化。...添加更多数据可视化元素和交互式控件Bokeh 不仅支持基本的图形元素,还支持添加更多高级的数据可视化元素和交互式控件,使得可视化效果更加丰富和生动。

    1.8K10

    使用 Bokeh 实现动态数据可视化:从基础到高级应用

    Python 中有许多强大的库用于数据可视化,其中 Bokeh 就是一款备受推崇的工具之一。Bokeh 提供了丰富的功能和灵活性,使得用户可以轻松创建动态、交互式的数据可视化。什么是 Bokeh?...Bokeh 是一个交互式可视化库,用于创建漂亮而且具有高度交互性的绘图。它专注于在现代 Web 浏览器中展示数据,并支持用于构建交互式应用程序的动态数据可视化。...创建交互式应用程序Bokeh不仅可以用于创建静态的数据可视化,还可以用于构建动态的交互式应用程序。...创建交互式应用程序Bokeh不仅可以用于创建静态的数据可视化,还可以用于构建动态的交互式应用程序。...然后,我们演示了如何使用 Bokeh 创建动态数据可视化,包括绘制折线图、添加交互性工具以及创建交互式应用程序等。

    1.4K00

    6个令人称赞的Python可视化库

    交互式图表:虽然 Seaborn 本身不支持交互式图表,但它可以与交互式图表库(如 Plotly 或 Bokeh)结合使用,以创建交互式图形。...现代化的外观:Bokeh 的图表外观非常现代化和吸引人,可以定制颜色、线条样式等。多种输出格式:Bokeh 支持多种输出格式,包括 HTML、Jupyter Notebook、交互式应用程序等。...无需前端开发经验:使用 Bokeh,不需要具备前端开发的经验,就可以创建交互式的 Web 可视化。支持大数据集:Bokeh 能够有效地处理大数据集,因此适用于各种规模的数据分析任务。...Bokeh 允许用户创建各种类型的图表,包括线图、散点图、柱状图、热图等,而且这些图表都可以在 Web 浏览器中交互式地操作。...交互式:Altair 支持交互式可视化,可以轻松添加交互式元素,例如工具提示、缩放和选择。基于 Vega-Lite:Altair 核心思想是将数据可视化视为数据集到图形的映射,而不是一个步骤序列。

    2.1K10

    我最常用的一个Python可视化工具,强烈推荐~

    说到Python数据可视化,最常用的要数matplotlib和seborn,它们几乎囊括了各种主流绘图场景,比如科研绘图、商业绘图、kaggle比赛绘图等,但这两也有短板,不适合动态和交互式绘图,而能弥补这一功能的就是...为什么说Bokeh交互能力强呢?...作为交互能力出众的可视化库,Bokeh提供了很多交互组件,比如平移、缩放、悬停、选择等,支持各种控件,比如按钮、滑块、下拉菜单、复选框等,通过Bokeh服务器来启用Python回调和实时更新的Web应用程序框架...在数据源方面,Bokeh能直接读取numpy或者pandas数据格式进行可视化展示,无缝集成pandas主流数据科学库,而且可以导出png、svg和表格。 如何安装Bokeh呢?...([1, 2, 3, 4, 5], [6, 7, 2, 4, 5], line_width=2) show(p) 其他更多好看的Bokeh交互式图表可以看下面示例:

    26910

    快为你的Jupyter添加这7个扩展,效率upup! ⛵

    在数据科学领域我们经常会使用 Jupyter Notebook(一个用于创建和共享计算文档的开源 Web 应用程序)来进行数据操作和交互式数据探索,这个工具非常棒的地方在于,它还支持非常多的拓展功能。...图片RISE:将 Jupyter Notebooks 变成幻灯片图片 Bokeh:浏览器中的交互式数据可视化Bokeh是一个适用于现代 Web 浏览器的Jupyter Notebook交互式可视化库。...借助于Bokeh我们可以快速简单地创建交互式绘图、仪表板和数据应用程序。...图片Bokeh:浏览器中的交互式数据可视化图片图片 nbgrader:构建作业与评分的Jupyter拓展这是一个对老师非常友好的 Jupyter 拓展工具,借助于它,可以在 Jupyter Notebook...:浏览器中的交互式数据可视化:https://github.com/bokeh/bokeh nbgrader:构建作业与评分的Jupyter拓展:https://github.com/jupyter/nbgrader

    2.3K82

    Python中常用数据可视化库:Bokeh和Altair

    Bokeh 简介 Bokeh是一个交互式可视化库,它能够创建各种类型的交互式图表,包括散点图、线图、条形图等。Bokeh提供了丰富的工具,使用户能够在图表中进行缩放、平移和选择等操作。...Bokeh 与 Altair 的比较 易用性: Bokeh:相对而言,Bokeh的学习曲线较为陡峭,需要一定的时间来掌握其强大的交互功能和绘图选项。...交互性: Bokeh:Bokeh提供了丰富的交互工具,可以轻松地创建交互式图表,并且支持自定义交互行为。...可视化表达能力: Bokeh:Bokeh可以创建各种类型的图表,并且支持自定义图表的外观和布局。...案例与代码示例 Bokeh 案例: 假设我们有一组销售数据,包括产品名称、销售量和销售额,我们想要使用 Bokeh 创建一个交互式条形图来展示各产品的销售情况。

    1.2K10

    可以的,“Pandas”现在也可以绘制交互式的图形了,来看看怎么做的吧?

    大家好,我是俊欣,今天来和大家分享一下“如何用Pandas来绘制交互式的图形”,希望读者朋友们读了之后能够有所收获。...01 Plotly作为后端支持 我们可以使用第三方的可视化模块来做“Pandas”的后端支持,例如“Plotly”以及“Bokeh”等模块,进而便可以绘制出交互式的图形了,我们先来看一下“Plotly”...02 Bokeh作为后端支持 好了,我们来看一下用“Bokeh”作为后端支持的“Pandas”可视化该如何来操作,我们也同样来绘制一个散点图,通过不同的类别来区分的,代码如下 pd.options.plotting.backend...= 'pandas_bokeh' import pandas_bokeh from bokeh.io import output_notebook from bokeh.plotting import...Proline and Hue by wine class', show_figure=False) show(p1) 绘制出来的结果如下,也是交互式的

    1.1K40

    全面解析Python中的数据可视化与交互式分析工具

    它可以创建静态、动画和交互式图表。...BokehBokeh也是一个用于创建交互式图表的库,特别适用于大数据集的可视化。Bokeh生成的图表可以嵌入到Web应用中,并且具有高性能的特点。...交互式可视化: 如果需要创建交互式和动态的可视化图表,Plotly和Bokeh是更合适的选择。它们提供了丰富的交互功能,使用户能够通过悬停、缩放和选区等方式与数据进行交互。...总结本文介绍了Python中常用的数据可视化与交互式分析工具,包括Matplotlib、Seaborn、Plotly和Bokeh。...Plotly 是一个强大的交互式绘图库,支持创建复杂且交互性强的图表,适用于需要与数据交互的场景。Bokeh 也是一个交互式绘图库,特别适用于大数据集的可视化,并且可以嵌入到Web应用中。

    96320
    领券