首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

2个模型的多个参数

是指在机器学习中,一个模型可以由多个参数来描述和控制其行为和性能。通常情况下,模型的参数是通过训练数据来学习得到的,以使模型能够最好地拟合训练数据并具有良好的泛化能力。

在机器学习中,模型的参数可以分为两类:可学习参数和超参数。

  1. 可学习参数:可学习参数是指模型中的参数,其值可以通过训练数据进行优化和学习。例如,在线性回归模型中,可学习参数就是回归系数。在神经网络模型中,可学习参数包括权重和偏置等。
  2. 超参数:超参数是指在模型训练之前需要手动设置的参数,其值不能通过训练数据进行学习。超参数的选择对模型的性能和泛化能力有很大影响。例如,在神经网络中,学习率、批大小、隐藏层的数量和大小等都是超参数。

对于2个模型的多个参数,可以通过以下方式进行描述和控制:

  1. 参数调优:通过调整模型的参数,可以改变模型的行为和性能。参数调优是一个迭代的过程,可以通过试验不同的参数组合来找到最佳的参数设置。常用的参数调优方法包括网格搜索、随机搜索和贝叶斯优化等。
  2. 参数共享:在某些情况下,两个模型可能共享一些参数。参数共享可以减少模型的复杂度和计算量,并提高模型的泛化能力。例如,在卷积神经网络中,多个卷积核可以共享权重参数,以提取不同位置的特征。
  3. 参数初始化:模型的参数初始化对于模型的训练和收敛速度有很大影响。常用的参数初始化方法包括随机初始化、零初始化和预训练初始化等。
  4. 参数正则化:为了防止模型过拟合和提高泛化能力,可以通过参数正则化来约束模型的参数。常用的参数正则化方法包括L1正则化和L2正则化等。
  5. 参数存储和加载:在模型训练完成后,可以将模型的参数保存到文件中,以便后续使用和加载。常用的参数存储和加载方法包括pickle和TensorFlow的SavedModel等。

对于腾讯云相关产品和产品介绍链接地址,可以根据具体的需求和场景选择适合的产品。腾讯云提供了丰富的云计算服务和解决方案,包括云服务器、云数据库、人工智能、物联网和区块链等。您可以访问腾讯云官方网站(https://cloud.tencent.com/)了解更多信息。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 每日论文速递 | 用于参数高效微调的小型集成LoRA

    摘要:参数高效微调(PEFT)是一种流行的方法,用于裁剪预训练的大型语言模型(LLM),特别是随着模型规模和任务多样性的增加。低秩自适应(LoRA)基于自适应过程本质上是低维的想法,即,显著的模型变化可以用相对较少的参数来表示。然而,与全参数微调相比,降低秩会遇到特定任务的泛化错误的挑战。我们提出了MELoRA,一个迷你合奏低秩适配器,使用较少的可训练参数,同时保持较高的排名,从而提供更好的性能潜力。其核心思想是冻结原始的预训练权重,并训练一组只有少量参数的迷你LoRA。这可以捕获迷你LoRA之间的显著程度的多样性,从而促进更好的泛化能力。我们对各种NLP任务进行了理论分析和实证研究。我们的实验结果表明,与LoRA相比,MELoRA在自然语言理解任务中的可训练参数减少了8倍,在指令跟随任务中的可训练参数减少了36倍,从而实现了更好的性能,这证明了MELoRA的有效性。

    01

    7篇顶会论文带你梳理多任务学习建模方法

    多任务学习(Multitask Learning)是迁移学习的一种方式,通过共享表示信息,同时学习多个相关任务,使这些任务取得比单独训练一个任务更好的效果,模型具有更好的泛化性。在深度学习模型中,多任务学习的最直接实现方法是多个Task共享底层的多层网络参数,同时在模型输出层针对不同任务配置基层Task-specific的参数。这样,底层网络可以在学习多个Task的过程中从不同角度提取样本信息。然而,这种Hard Parameter Sharing的方法,往往会出现跷跷板现象。不同任务之间虽然存在一定的关联,但是也可能存在冲突。联合训练导致不相关甚至冲突的任务之间出现负迁移的现象,影响最终效果。为了解决Hard Parameter Sharing的弊端,学术界涌现了如多专家网络(Multi-expert Network,MoE)等多种解决深度学习中多任务学习问题的方法,是学术界一直以来研究的热点,在工业界也有诸多应用。本文从最基础的多任务学习开始,梳理了近几年来7篇多任务学习顶会相关工作,包括Hard/Soft Parameter Sharing、参数共享+门控、学习参数共享方式等建模方式。

    01

    ICCV 2019 | 加一个任务路由让数百个任务同时跑起来,怎么做到?

    传统的多任务(MTL)学习方法依赖于架构调整和大型可训练参数集来联合优化多个任务。但是,随着任务数的增多,体系结构调整和资源需求的复杂性也随之增加。在本文中,作者引入了一种新方法,该方法在卷积激活层上应用条件特征的智能转换,使模型能够成功地执行多个任务。为了和常规的多任务学习做区分,本文引入了Many Task Learning (MaTL)作为特例。MaTL的特殊之处在于它指代一个模型能完成超过20个任务。伴随MaTL任务,作者引入了任务路由(TR)的方法并将其封装在一个称为任务路由层(TRL)的层中,使得一个模型能适合数百个分类任务。

    01

    每日论文速递 | 使用LoRA微调也会过拟合?探索LoRA中的Dropout

    摘要:以显著的能力,大语言模型(LLMs)已成为许多自然语言处理应用中不可或缺的元素,而参数高效的微调,特别是 LoRA,已经因其轻量级的模型定制方法而备受青睐。与此同时,各种dropout方法,最初设计用于所有参数更新的完全微调(full weight),缓解了与过度参数冗余相关的过拟合问题。因此,由于 LoRA 的可忽略的可训练参数和先前dropout方法的有效性之间存在可能的矛盾,这一点在很大程度上被忽视了。为了填补这一空白,我们首先确认参数高效的 LoRA 也容易出现过拟合问题。然后,我们重新审视了特定于 transformer 的dropout方法,并从数学和经验上建立了它们的等价性和差异。在这种比较分析的基础上,我们引入了一个统一的框架进行全面的研究,该框架基于dropout位置、结构模式和补偿措施实例化这些方法。通过这个框架,我们揭示了当涉及到有限的可训练参数时,它们的新偏好和性能比较。这个框架还允许我们将最有利的方面融合成一种名为 HiddenKey 的新dropout方法。大量实验证实了 HiddenKey 在多个模型和任务中的显著优越性和充分性,这凸显了它作为大型语言模型的高性能和参数高效微调的首选方法。

    01

    每日论文速递 | Google提出PERL:将PEFT与RLHF结合起来

    摘要:从人类反馈中强化学习(RLHF)已被证明是将预训练的大型语言模型(LLM)与人类偏好相匹配的有效方法。但是,使用 RLHF 训练模型的计算成本很高,而且整个过程也很复杂。在这项工作中,我们研究的 RLHF 是使用 Hu 等人[2021]提出的参数高效的低库自适应(Low-Rank Adaptation,LoRA)方法来训练底层模型的。我们研究了 "参数高效强化学习"(PERL)的设置,其中我们使用 LoRA 进行奖励模型训练和强化学习。我们比较了 PERL 和传统微调(完全微调)在 7 个基准(包括 2 个奖励建模和强化学习的新数据集)中的不同配置。我们发现,PERL 的性能与传统的 RLHF 设置相当,同时训练速度更快,占用内存更少。这使得 RLHF 的高性能得以实现,同时减少了限制其作为大型语言模型对齐技术的采用的计算负担。我们还发布了两个新颖的向上/向下偏好数据集:"Taskmaster Coffee "和 "Taskmaster Ticketing",以促进围绕 RLHF 的研究。

    01

    你也可以训练超大神经网络!谷歌开源GPipe库

    深度神经网络(DNN)推动了许多机器学习任务的发展,包括语音识别、视觉识别、语言处理。BigGan、Bert、GPT2.0取得的近期进展表明,DNN模型越大,其在任务中的表现越好。视觉识别领域过去取得的进展也表明,模型大小和分类准确率之间存在很强的关联。例如,2014年ImageNet视觉识别挑战赛的冠军GoogleNet以400万的参数取得了74.8%的top-1准确率,但仅仅过了三年,冠军的宝座就被Squeeze-and-ExcitationNetworks抢去,后者以1.458亿(前者的36倍还多)的参数量取得了82.7%的top-1准确率。然而,在这段时间里,GPU的内存只提高了3倍左右,当前最优的图像模型却已经达到了谷歌云 TPUv2的可用内存。因此,我们急需一个能够实现大规模深度学习并克服当前加速器内存局限的可扩展高效架构。

    02

    你也可以训练超大神经网络!谷歌开源GPipe库

    深度神经网络(DNN)推动了许多机器学习任务的发展,包括语音识别、视觉识别、语言处理。BigGan、Bert、GPT 2.0取得的近期进展表明,DNN模型越大,其在任务中的表现越好。视觉识别领域过去取得的进展也表明,模型大小和分类准确率之间存在很强的关联。例如,2014年ImageNet视觉识别挑战赛的冠军GoogleNet以400万的参数取得了74.8%的top-1准确率,但仅仅过了三年,冠军的宝座就被Squeeze-and-ExcitationNetworks抢去,后者以1.458亿(前者的36倍还多)的参数量取得了82.7%的top-1准确率。然而,在这段时间里,GPU的内存只提高了3倍左右,当前最优的图像模型却已经达到了谷歌云 TPUv2的可用内存。因此,我们急需一个能够实现大规模深度学习并克服当前加速器内存局限的可扩展高效架构。

    03

    每日论文速递 | Meta提出Branch-Train-Mix 混合专家大模型训练方法

    摘要:我们研究了训练大语言模型(LLM)的高效方法,使其具备多个专业领域的能力,如coding、数学推理和世界知识。我们的方法被命名为 "分支-训练-混合Branch-Train-MiX (BTX)(BTX)",它以种子模型为起点,以并行方式对专家进行分支训练,同时提高吞吐量并降低通信成本。在对单个专家进行异步训练后,BTX 将其前馈参数汇集为专家混合(MoE)层中的专家,并对剩余参数求平均值,然后通过 MoE-finetuning 阶段学习token级路由。BTX 概括了两种特殊情况,一种是分支-训练-合并方法(该方法没有学习路由的 MoE 微调阶段),另一种是稀疏上循环方法(该方法省略了异步训练专家的阶段)。与其他方法相比,BTX 实现了最佳的精度-效率权衡。

    01
    领券