旅行商问题(Traveling Salesman Problem,TSP)是一个经典的组合优化问题,目标是找到一条最短的路径,使得旅行商能够访问一系列城市并回到起始城市。该问题在计算机科学和运筹学领域具有重要的研究价值和实际应用。
旅行商问题的分类:
旅行商问题的优势:
旅行商问题的应用场景:
腾讯云相关产品和产品介绍链接地址:
请注意,以上链接仅为示例,具体的产品和服务选择应根据实际需求进行评估和选择。
两年前,当 Nathan Klein 刚进入华盛顿大学研究生院时,他的导师提出了一个谦逊的培养计划:一起研究理论计算机科学领域一个最有名的待解决问题。
在一个商店里,顾客需要购买一些商品。他们需要按照价格从低到高排序,以便更容易地找到他们想要的商品。
但有时候,不确定要从哪个城市出发。假设联邦快递将包裹从芝加哥发往湾区,包裹将通过 航运发送到联邦快递在湾区的50个集散点之一,再装上经过不同配送点的卡车。该通过航运发送 到哪个集散点呢?在这个例子中,起点就是未知的。因此,你需要通过计算为旅行商找出起点和 最佳路线。 在这两种情况下,运行时间是相同的。但出发城市未定时更容易处理,因此这里以这种情况为例。 涉及两个城市时,可能的路线有两条
遗传算法的基本概念 用遗传算法求函数最大值一:编码和适应值 用遗传算法求函数最大值二:选择、交叉和变异 用遗传算法求函数最大值三:主程序和结果 轮盘赌法简单介绍 Matlab中遗传算法工具箱的使用 遗传算法解决旅行商问题(TSP)一:初始化和适应值 遗传算法解决旅行商问题(TSP)二:选择、交叉和变异 遗传算法解决旅行商问题(TSP)三:主程序和执行结果 遗传算法求解混合流水车间调度问题(HFSP)一:问题介绍 遗传算法求解混合流水车间调度问题(HFSP)二:算法实现一 遗传算法求解混合流水车间调度问题
在下图中 , 从某个顶点出发 , 将所有的顶点都走一遍, 并且每个顶点只能经过一次 ,
很愉快的,我们又见到了我们的老朋友,旅行商问题(Travelling salesman problem, TSP),在之前的一期推送中,我们利用团队的高配置服务器计算了利用动态规划求解旅行商问题的时间和空间消耗。看过的朋友应该还对之前的那两个增长曲线记忆犹新吧,如果还没有看过,那赶紧去看一下哦,下面给出上一篇文章的链接:
本文参考期刊论文信息如下: "The Tree Representation for the Pickup and Delivery Traveling Salesman Problem with LIFO Loading", Yongquan Li, Andrew Lim, Wee-Chong Oon, Hu Qin*, Dejian Tu, European Journal of Operational Research, Volume 212, Issue 3, 1 August 2011, P
旅行商问题(Travelling salesman problem, TSP)是这样一个问题:给定一系列城市和每对城市之间的距离,求解访问每一座城市一次并回到起始城市的最短回路。
局部搜索是解决最优化问题的一种启发式算法。因为对于很多复杂的问题,求解最优解的时间可能是极其长的。因此诞生了各种启发式算法来退而求其次寻找次优解,局部搜索就是其中一种。它是一种近似算法(Approximate algorithms)。
4. BPP (Bounded-error Probabilistic Polynomial time)
前 排 最近这个春节又快到了,虽然说什么有钱没钱回家过年。但也有部分小伙伴早已经备好了盘缠和干粮,准备在这个难得的假期来一场说走就走的旅行了。毕竟世界这么大我想去看看呵……等等,醒醒吧各位 但是,作为21世纪的新一代青年,即使咱穷,梦想还是要有的,对吧。那么,问题来了,如何用最少的钱,环绕中国各大城市走一波?咳咳,今天小编就是为解决此问题而来的。顺带提一波,最近天冷了。小编在这里给大家送上最真切的关心…… * 内容提要: *旅行商问题介绍 *模拟退火算法 *旅行商问题的解决 我想用最少的钱环游中国一圈 01
最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
编译:数据观 https://www.shujuguan.cn/?from=qcloud 作者:Martin Reeves, Simon Levin, Kevin Whitaker 计算机科学版《商业
模拟退火算法是一种启发式算法,用于在解空间中寻找问题的全局最优解。它模拟物体退火的过程,通过接受可能使目标函数增加的解,有助于跳出局部最优解,最终找到全局最优解。本文将深入讲解Python中的模拟退火算法,包括基本概念、算法思想、调度策略以及使用代码示例演示模拟退火算法在实际问题中的应用。
目前,在计算机这个学科中有两个非常重要方向:一个是离散优化的经典算法-图算法,例如SAT求解器、整数规划求解器;另一个是近几年崛起的深度学习,它使得数据驱动的特征提取以及端到端体系结构的灵活设计成为可能。
谷歌DeepMind团队最新发现,用这个新“咒语”(Take a deep breath)结合大家已经熟悉的“一步一步地想”(Let’s think step by step),大模型在GSM8K数据集上的成绩就从71.8提高到80.2分。
算法是什么? 算法就是完成一组特定任务的方法。 比如将大象放进冰箱需要三步: 打开冰箱 将大象放进冰箱 关闭冰箱 这就是一种算法。 如果用计算机语言来叙述,就是任何实现某种功能的代码片段都可以称之为算法。 一个程序员应该掌握大概50种基本算法,但目前我们属于初级阶段,先掌握一些简单有趣的算法,为日后进一步的算法学习打下基础。 二分查找 比如我要在字典(这里是真实的字典,不是Python的dict类型)中查找以O为拼音首字母的汉字,我会从字典的中间附近开始翻阅,因为我知道字母O在26个字母的中间附近,
有一个快递员,要分别给三家顾客送快递,他自己到达每个顾客家的路程各不相同,每个顾客之间的路程也各不相同。
所有 能够被 确定性 单个带子图灵机 , 在 多项式时间 内 , 能够被 判定的计算问题 ( 语言类 ) ,
今天文章的内容是动态规划当中非常常见的一个分支——状态压缩动态规划,很多人对于状态压缩畏惧如虎,但其实并没有那么难,希望我今天的文章能带你们学到这个经典的应用。
TSP问题相信大家已经不陌生了,它是指假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。
问题描述 该问题来源于参加某知名外企的校招面试。根据面试官描述,一块木板有数百个小孔(坐标已知),现在需要通过机械臂在木板上钻孔,要求对打孔路径进行规划,力求使打孔总路径最短,这对于提高机械臂打孔的生产效能、降低生产成本具有重要的意义。 数学模型建立 问题分析 机械臂打孔生产效能主要取决于以下三个方面: 单个孔的钻孔作业时间,这是由生产工艺所决定的,不在优化范围内,本文假定对于同一孔型钻孔的作业时间是相同的。 打孔机在加工作业时,钻头的行进时间。 针对不同孔型加工作业时间,刀具的转换时间。 在机
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2368 Accepted Submission(s): 333
一. 爬山算法 ( Hill Climbing ) 介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达
GitHub 链接:https://github.com/martius-lab/blackbox-backprop
关于这三种算法的详细步骤,小编在这里就不再赘述啦,让我们直接进入正题~想要了解这些算法的同学可参考以下推文:
该问题来源于参加某知名外企的校招面试。根据面试官描述,一块木板有数百个小孔(坐标已知),现在需要通过机械臂在木板上钻孔,要求对打孔路径进行规划,力求使打孔总路径最短,这对于提高机械臂打孔的生产效能、降低生产成本具有重要的意义。
在寻找最优解的过程中,我们常常想到最简单,最直接的办法是能不能把所有解全部求出,然后再从这些解中寻找最好的那一个。
近来来计算理论的发展极其缓慢,而与之对应的是计算机领域的应用侧发展可谓日新月异,像GPT-3及其衍生的AI模型,各类大数据模型、超大规模云平台等等方面的进展不胜枚举,相关成果也都举世瞩目,但这些计算机应用大发展本质,都是硬件价格不断快速下降所带来的衍生红利,而这种现象早在50年前就被摩尔定律所明确预言了,凡是能靠算力解决的问题目前看都不再是问题。
今日,2019 ACM 最佳博士论文奖公布,毕业于特拉维夫大学的 Dor Minzer 获得该奖项。此外,来自微软的 Jakub Tarnawski 和出身清华姚班的吴佳俊获得荣誉提名奖。
有若干个城市,任何两个城市之间的距离都是确定的,现要求一旅行商从某城市出发必须经过每一个城市且只在一个城市逗留一次,最后回到出发的城市,问如何事先确定一条最短的线路已保证其旅行的费用最少?
Google的最新一项研究提出了OPRO优化方法(Optimization by PROmpting),它利用LLM作为优化器,解决一系列用自然语言描述的任务,包括线性回归、旅行商问题(TSP)问题等。让我们来看看是如何做到的吧!
粒子群优化算法采用一种人工智能的形式来解决问题。这种算法对于求解那些使用了多个连续变化的值的函数来说,尤为有效。这篇文章将会介绍如何修改粒子群算法,以使用离散固定值来解决诸如旅行商(TSP,Travelling Salesman Problem)这样的问题。
第1章 算法简介 引言 算法是一组完成任务的指令。任何代码片段都可视为算法 性能 你无需自己动手编写每种算法的代码!但如果你不明白其优缺点,这些实现将毫无用处 问题解决技巧 你将学习至今都没有掌握的问题解决技巧 如果你喜欢开发电子游戏,可使用图算法编写跟踪用户的AI系统 你将学习使用K最近令算法编写推荐系统 有些问题在有限的时间内是不可解的!书中讨论NP完全问题的部分将告诉你,如何识别这样的问题以及如何设计找到近似答案的算法 阅读本书,需要具备基本的代数知识。具体说,给定函数f(x)=x × 2,f(5)的
【导读】算法是人们利用电脑解决问题的技巧。《图解算法》这本书以轻松的对话方式,采用图解的辅助说明,帮助读者简单、自然地掌握算法的基本概念,并养成主动思考的习惯,达到用算法解决实际问题的目的。本文是《图解算法》系列最后一篇。
此部分学习内容适合工业工程,管理科学与工程,信息管理,物流管理,系统工程等相关专业的2021级(大一)本科生。只需要有C++,Java编程基础即可,不需要任何数学基础,也不需要运筹学基础,推文由简到难递进,适合自学!大一可以把这些文章掌握,你就真正入门决策优化算法这个领域了。 在朋友圈转发此推文,并且集齐20个赞,可被邀请加入数据魔术师2021级本科学习交流群,会有高年级本科生,硕士生、博士生和老师在群里提供指导和讨论。入群方式见文末! 干货 | 用模拟退火(SA, Simulated
粒子群优化器,作为一种使用人工智能来解决问题的方式,在解多元、恒变的方程式方面有很大的优势。在本文中我们主要讲的是通过修改算法来解决一些问题,例如使用离散固定值作为参数的旅行商问题。
本文是在阅读Aditya Bhargava先生算法图解一书所做的总结,文中部分代码引用了原文的代码,在此感谢Aditya Bhargava先生所作出的这么简单的事例,对基础算法感兴趣的朋友可以阅读原文。由于本人也是编程初学者,所以本书比较浅显易懂,所介绍的算法配上插图也十分易懂,这里只是介绍几种最基础的算法由浅入深以帮助理顺一些简单的思维逻辑。
蚁群算法(ant colony optimization)最早是由Marco Dorigo等人在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找食物时,通过分泌一种称为信息素的生物激素交流觅食信息从而能快速的找到目标,据此提出了基于信息正反馈原理的蚁群算法。
上次变邻域搜索的推文发出来以后,看过的小伙伴纷纷叫好。小编大受鼓舞,连夜赶工,总算是完成了手头上的一份关于变邻域搜索算法解TSP问题的代码。今天,就在此给大家双手奉上啦,希望大家能ENJOY哦!
在以往的算法中,所接触到的大都是多项式时间内可完成的算法,比如O(n),O(nlogn),O(n^2)…,但仍存在一些算法的时间复杂度为:O(n^logn),O(2^n),O(n!)是非多项式时间算法,当此类程序规模一旦过大,便成为目前的计算机解决不了的难题。因此尝试用NP完全理论进行理解。
回溯法是一种组织搜索的一般技术,有“通用的解题法”之称,用它可以系统的搜索一个问题的所有解或任一解。 有许多问题,当需要找出它的解集或者要求回答什么解是满足某些约束条件的最佳解时,往往要使用回溯法。 可以系统地搜索一个问题的所有解或任意解,既有系统性又有跳跃性。 回溯法的基本做法是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。 这种以深度优先的方式系统地搜索问题的解的方法称为回溯法。
数据结构与算法 基本算法思想 动态规划 贪心算法 回溯算法 分治算法 枚举算法 算法基础 时间复杂度 空间复杂度 最大复杂度 平均复杂度 基础数据结构 数组 动态数组 树状数组 矩阵 栈与队列 栈 队列 阻塞队列 并发队列 双端队列 优先队列 堆 多级反馈队列 线性表 顺序表 链表 单链表 双向链表 循环链表 双向循环链表 跳跃表 并查集 哈希表(散列表) 散列函数 碰撞解决办法: 开放地址法 链地址法 再次哈希法 建立公共溢出区 布隆过滤器 位图 动态扩容 树 二叉树: 各种遍历,递归与非递归 二
遗传算法是一种进化算法,其基本原理是模仿自然界中的生物“物竞天择,适者生存”的进化法则,把问题参数编码为染色体,再利用迭代的方式进行选择、交叉、变异等运算法则来交换种群中染色体的信息,最终生成符合优化目标的染色体。
TSP 是一个 NP 完全问题,今天咱要聊聊正是七大 千禧年大奖难题 之首的 【P/NP 问题】!
数组和链表的操作的运行时间 操作数组链表 读取 O(1) O(n) 插入 O(n) O(1) 删除 O(n) O(1) 选择排序 将一组数按照从大到小的顺序排序 算法运行时间O(n*1/2*n),但大O表示法省略诸如1/2这样的常数,因此简单的写作O(n*n) 数组和链表总结
本文介绍了遗传算法的发展历程、应用案例、变种以及未来展望。
动态规划也用于优化问题。像分治法一样,动态规划通过组合子问题的解决方案来解决问题。而且,动态规划算法只解决一次每个子问题,然后将其答案保存在表格中,从而避免了每次重新计算答案的工作。
领取专属 10元无门槛券
手把手带您无忧上云