本次展示shiny的功能有: 1、读取本地数据; 2、交互展示数据(view) 3、动态交互作图(自动读取上传数据的列名) 体验网址:https://yanshenli.shinyapps.io.../Desktop/ library(shiny) library(ggplot2) ui <- fluidPage( navbarPage("User Interface:",tabPanel("...x = input$variableNames_x, title = "ggplot") } }) } shinyApp(ui, server) 一个完整的shiny..., 在ui中通过*input调整数值参数、上传数据等,并将数据传递给server进行相应计算; 然后,Server对数据进行计算、绘图,并将计算结果(图片、表格等)返回给ui 最后,通过ui中的*output...来展示server计算返回的结果(图片、表格等)
一般的图非常简单,和平常写R代码一样,不过不在.R中写,而是在.Rmd中写,将你的代码写入如下的代码框中,使用Control+Alt+i可以直接插入一个代码框。...创建Shiny交互式应用程序 shiny由RStudio开发,不同于前面的动图,它可以在web浏览器中运行。...服务器背后的逻辑是根据输入input的样本容量n生成随机数,计算随机样本的均值,并将结果放在output中。...我们可以根据想展示给用户的参数来定义shiny应用程序的用户界面,shiny提供了丰富的输入控件: shiny_vars = ls(getNamespace("shiny")) shiny_vars[...无论是文本,图形还是表格,计算都是在render*函数中完成,目前有下面一些: shiny_vars[grep("^render", shiny_vars)] #> [1] "renderDataTable
公司用的是实体服务器,租用机房带宽,买了30M的带宽,然而经常有带宽超额的问题,每个月都要额外交几千块,因此打算限制带宽。 在交换机上限制带宽是一种方法,但是这个挺麻烦的。...另外,也可以通过软件限制带宽,在对外提供服务的服务器上限制带宽。 在Linux中限制一个网络接口的速率 这里介绍的控制带宽资源的方式是在每一个接口上限制带宽。...外发流量通过放在不同优先级的队列中,达到限制传出流量速率的目的;而传入流量通过丢包的方式来达到速率限制的目的。...安装 wondershaper 在 Fdora 或 CentOS/RHEL (带有 EPEL 软件仓库) 中安装 wondershaper(版本到 1.2 ): # yum install wondershaper...speedtest-cli 常用命令详解: –list :根据距离显示 speedtest.net 的测试服务器列表 –server=SERVER :指定测试服务器列表中id的服务器来测试 –share
有一些组合优化问题不是那么的“难”,比如最短路问题,可以在多项式的时间内进行求解。然而,对于一些NP-hard问题,就无法在多项式时间内求解了。...1 动机 在组合优化算法中使用机器学习的方法,主要有两方面: (1)优化算法中某些模块计算非常消耗时间和资源,可以利用机器学习得出一个近似的值,从而加快算法的速度。...(当前行为“好”以后就多往这个方向发展,如果“坏”就尽量避免这样的行为,即不是直接得到了标签,而是自己在实际中总结得到的) 3 近来的研究 第1节的时候,我们提到了在组合优化中使用机器学习的两种动机,那么现在很多研究也是围绕着这两方面进行展开的...假设environment是算法内部当前的状态,我们比较关心的是组合优化算法中某个使用了机器学习来做决策的函数,该函数在当前给定的所有信息中,返回一个将要被算法执行的action,我们暂且叫这样的一个函数为...在贪心算法中,每次选择一个距离上次插入节点最近的节点,当然我们最直接的做法也是这样的。但是这样的效果,并没有那么的好,特别是在大规模的问题中。
引言 在我们构建和优化高并发系统时,往往会遇到需要对服务的请求数进行限制的需求。这是因为无论服务多么强大,其处理能力总是有限的。超出处理能力的请求可能会导致服务过载,进而影响到整个系统的稳定性。...在这篇文章中,我们将探讨滑动窗口模式,了解它的工作原理,以及如何在 Go Web 服务中实现滑动窗口模式的 TPS 限制。 什么是滑动窗口模式?...在固定窗口模式中,窗口的更换可能导致突然大量的请求得到处理,进而导致服务压力的突然增加。而滑动窗口模式通过持续滑动的窗口,可以避免这种情况,实现更平滑的请求控制。...接下来,我们只需要判断队列的长度是否超过了设定的 TPS 限制。如果超过了限制,就拒绝或者延迟处理新的请求;如果没有超过限制,就直接处理请求。...,它可以保证服务在处理请求时的平稳性,避免因为窗口切换导致的服务压力突然增加。
组合电路在 HLS 中的重要性 该项目通过一个示例演示了 HLS 中组合电路对设计的影响。 在 HLS 中描述组合任务非常重要,因为它直接影响整个系统的性能。...系统中的其他模块使用主输出,而下一个状态数据修改存储单元并定义新的电路状态。 动机 所有组合电路都需要一个时间间隔,以便在其输入发生任何变化后产生稳定的输出。这个时间被称为传播延迟。...组合电路中从输入到输出的不同路径可能具有各种延迟。最长路径也称为关键路径,被定义为设计传播延迟。 在时序电路中,时钟周期对设计性能有直接影响。图 2 中组合部分的传播延迟决定了最小时钟周期。...因此,了解如何在 HLS 中设计高效的组合电路是在硬件上开发高性能算法的第一步。 组合电路的影响 在这里,将通过一个例子来解释正确的 C/C++ 描述组合设计如何能够加快实现速度。...此外,第二种方案在 FPGA 上使用的资源要少得多。 结论 设计高效的组合电路是在 HLS 中开发算法或系统控制器的第一步。多种优化技术和编码风格可用于描述复杂算法的组合部分。
画图其实不难,先为每种胆汁酸设置对应的颜色(我后续要拼图),然后再作图。这里代码就不 show 了,下面 shiny 的代码也会提到。 改造成 Shiny App 成品展示 这是主界面: ?...把这个小勾勾打上程序就会根据你的类别数据出现相应数量的取色器(示例数据中是 4 类): ? 然后再点击绘图按钮,就会出现自定义分类颜色的第三张图啦: ? 这就是这个网站的主要功能。...),只有 Custom colors for each taxon group 选项打上勾时才会显示取色器 UI,这部分会在 server.R 中介绍) 根据不同的选项类型,选择使用不同的输入方案,比如...: •sliderInput() 滑块选择•textInput() 文本输入•selectizeInput() 下拉菜单•colourInput() 取色器,需用到 library(colourpicker...下面开始写主程序,这里我只会介绍一些关键的代码片段,完整代码在最后。
https://blog.csdn.net/u010105969/article/details/48895361 在Xcode中的textField中输入中文: 依次选择:Xcode...—>product —> scheme —> Edit scheme —> run —> options — > application Region.将选项改成”中国”即可.记得最后在键盘中选择简体拼音
在所有的树形结构中最适合的设计模式就是组合模式,我们看看常用商品分类中如何使用。...先定义一个树形结构的商品接口 public interface TreeProduct { List allProducts(); boolean addProduct...addProducts(List products); boolean removeProduct(TreeProduct product); } 我们来定义一个商品分类的实现类...(List products) { throw new RuntimeException("不支持此方法"); } } 最后是main方法,当然你可以在Web...的系统去改造这个模式 public class ProductMain { public static void main(String[] args) { TreeProduct
2、IM安全系列文章本文是IM通讯安全知识系列文章中的第2篇,总目录如下:《即时通讯安全篇(一):正确地理解和使用Android端加密算法》《即时通讯安全篇(二):探讨组合加密算法在IM中的应用》(本文...5、应用探讨:组合加密算法实现即时通信系统的认证模型本文综合利用以上算法的优点,在IM系统中建立以下消息发送模型,以解决IM系统所面临的信息窃取、篡改、伪造等安全问题。...在Java密码术体系结构中,密钥生成和操作可以使用keytool程序来执行。...7、应用探讨:组合加密算法应用模型的安全性及效率分析在以上模型中,利用对称加密算法处理消息、文件的加密,以解决信息、文件传送的机密性问题,具有加密速度快的特点;用公开密钥算法的加密技术解决了对称密钥在网络中明文传输问题...;用Hash算法计算出摘要,再通过公开密钥算法的数字签名技术对摘要进行签名,既提高了效率,又保证了信息文件传输的鉴别和不可否认性;在文件处理过程中,通过病毒扫面和组合加密双重处理,减少了网络中文件传输病毒蠕虫感染的几率
尤其是在R包中编程改变了从ggplot2引用函数的方式,以及在aes()和vars()中使用ggplot2的非标准求值的方式。...有时候在开发R包时为了保证正常运行,不得不将依赖包列入Depdens。...常规任务最佳实践 使用ggplot2可视化一个对象 ggplot2在包中通常用于可视化对象(例如,在一个plot()-风格的函数中)。.../ 234, "r" = 25 / 234 ), class = "discrete_distr" ) R中需要的类都有plot()方法,但想要依赖一个单一的plot()为你的每个用户都提供他们所需要的可视化需求是不现实的...,因为这限制了包开发者自己控制S3用于实现自己的方法。
并且在1.21中完善了windows系统下的extension的bug。...▶ pip install radian 四 在R中安装languageserver和jsonlite R LSP client需要借助languageserver实现函数的智能识别,R session...的配置 Path中添加R的执行文件的路径,当然也可以选择radian.exe的路径(该路径存在于python的scripts文件夹中)。...6 打开Terminal中输入radian此时就可以运行R script,并且用View()函数浏览数据、环境中的变量以及图片 ?...中运行的话,则会出现R session watcher不启用的状况,data和plot的review窗口则会自动调用自身gui所带的review窗口,以在windows中选择radian.exe路径为例
前面给大家简单介绍了 ☞【R语言】R中的因子(factor) 今天我们来结合具体的例子给大家讲解一下因子在临床分组中的应用。 我们还是以TCGA数据中的CHOL(胆管癌)这套数据为例。...关于这套临床数据的下载可以参考 ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) 前面我们也给大家介绍过一些处理临床数据的小技巧 ☞【R语言】卡方检验和Fisher精确检验,复现临床paper...stage I,stage II,stage III和stage IV四个分期 接下来我们试着把组织病理分期从四个组合并成两个组,并转换成因子 方法一、使用gsub函数 前面也给大家介绍过☞R替换函数...接下来我们试着把组织病理分期从四个组合并成三个组,并转换成因子 方法一、使用gsub函数 #删除组织病理学分期末尾的A,B或者C等字母,例如Stage IIIA,Stage IIIB stage=...参考资料: ☞【R语言】R中的因子(factor) ☞如何从TCGA数据库下载RNAseq数据以及临床信息(一) ☞【R语言】卡方检验和Fisher精确检验,复现临床paper ☞R生成临床信息统计表
在人力资源领域,许多人力资源主管现在正在使用大语言模型进行招聘、绩效管理和指导。 同时我们也看到了生成式AI在软件开发领域取得的进步。...达到人类水平的语言理解:这些模型具有理解和生成语言的能力,可以部分或全部自动化企业中的语言理解和写作工作。...目前的局限性 像GPT-4这样的大型语言模型(LLM)基于本质上具有概率特性的神经网络。这意味着对同样的输入,每次运行都可能产生略有不同的输出,因为模型结构中存在随机性,训练过程也具有随机性。...可预测性:在许多商业场景下,基于确定输入预测系统行为至关重要。使用不确定模型难以保证特定输出,这使得规划和制定战略更具挑战性。 测试:测试是任何软件开发流程(包括业务应用开发)的重要组成部分。...LLM的不确定性使编写和运行稳定、可重复的测试变得困难。 风险管理:由于LLM的概率性质,其输出总会存在不确定性。这可能增加业务应用中的风险,特别是在敏感领域。
概率函数为f(k;r,p)=choose(k+r-1,r-1)*p^r*(1-p)^k, 当r=1时这个特例分布是几何分布 rnbinom(n,size,prob,mu) 其中n是需要产生的随机数个数,...size是概率函数中的r,即连续成功的次数,prob是单词成功的概率,mu未知.....mean+3sd)几乎是在肯定的。...Gamma分布中的参数α,称为形状参数(shape parameter),即上式中的s,β称为尺度参数(scale parameter)上式中的a E(x)=s*a, Var(x)=s*a^2....ncp是non-centrality parameter (non-negative).ncp=0时是central卡方分布,ncp不为0时,表示这个卡方分布是由非标准正态分布组合而成,ncp=这些正态分布的均值的平方和
除了描述在图上发生的过程外,一个自然的问题是如何介入网络以优化给定过程的结果。这类在离散结构上的组合优化问题通常具有挑战性,因为解决方案空间的迅速增长。...., 2021)相辅相成,无论是在提出统一范式还是关注非典型问题方面。 本文的其余部分如下组织。在第2节中,我们提供了关于图上的组合优化问题及其使用RL方法的相关技术背景。...随后,在第3节中,我们回顾了考虑优化图结构的工作(即,从头开始创建图或修改现有图)以使目标函数最大化。然后,在第4节中,我们综述了在固定图结构下优化过程的论文。...我们在第6节以图强化学习作为解决图上组合优化问题的统一范式的讨论来结束本文。 图结构优化在机器学习(ML)处理典型图组合优化问题的工作中,一个共有的特点是它们通常不涉及对图的拓扑结构进行改变。...代理可能被允许进行边的添加、移除和重连,或者这些操作的某种组合。 鉴于范围的自然限制,我们只考虑那些(1)使用图表示问题;(2)通过RL训练策略进行结构优化的工作。
整理之前在知识星球打卡汇总的 Shiny 笔记,作为速学、速查使用和分享。 基于 https://shiny.rstudio.com/tutorial/ 视频而非文字教程写的笔记。...p4:分享 Shiny 将所有脚本和材料保存到一个目录,目录下代码通常以以下 2 种方式之一存储: app.R ui.R & server.R ? ? ?...: 在自己的 linux 服务器上管理和部署 shiny 的软件 Download Shiny Server - RStudio更多 shiny 内容:Shiny最后就是复习,第一部分总的下来是非常简单的...p8:响应值(reactive values) 响应值就是 Shiny 中的数据流,input 是响应值的列表,这些值展示了当前输入的各自状态。注意⚠️:响应值只能在对应的设定好的响应环境中使用!...需要注意⚠️的是,当多个输入在同一个代码块中时,修改一个参数会更新全部的参数,在一般情况下没有问题,但如果涉及随机数就会影响整个结果。
在我们知道如何创建一系列输入和输出控件之后,我们需要学会如何在一个页面中对它们进行排列,以达到比较好的展示效果。这正是布局函数的工作,布局函数提供了一个应用高层次的可视化结构。...这篇文章的内容聚焦于 fluidPage() 函数,它提供了大多数应用使用的布局风格。在未来的文章中我们将讨论布局函数家族的其他成员,如仪表盘、对话框。 依旧先载入 Shiny。...library(shiny) 概览 Shiny 应用布局由层次函数调用创建,其中 R 中的层次结构与输出中的层次结构匹配。...页面函数 最重要的布局函数是上面已经展示过的 fluidPage(),我们使用它将多个输入和输出控件组合形成一个 Shiny 应用。如果我们仅使用 fluidPage() 会是怎样的? ?...目前的操作很简单吧,只是在 fluidPage() 中设置 theme 参数。
在原假设下,滚珠轴承的平均直径不会改变,而在备择假设中,在制造过程中的某些未知点处,机器变得未校准并且滚珠轴承的平均直径发生变化。然后,检验在这两个假设之间做出决定。...我们希望将我们的检验应用于检测 GARCH 模型中的结构性变化,这是金融时间序列中的常见模型。据我所知,用于 GARCH 模型估计和推断(以及其他工作)的“最新技术” R 包是 fGarch。...下面是一个辅助函数,用于通过 garchFit()(在计算过程中屏蔽所有 garchFit() 的输出)来提取特定拟合的系数和标准差。...我在本文中强调的问题让我更加意识到选择在优化方法中的重要性。我最初的目标是编写一个函数,用于根据 GARCH 模型中的结构性变化执行统计检验。...这是一个我自认知之甚少的主题,如果 R 社区中的某个人已经观察到了这种行为并且知道如何解决它,我希望他们会在评论或电子邮件中告诉我。
领取专属 10元无门槛券
手把手带您无忧上云