首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

时间序列分解:将时间序列分解成基本的构建块

大多数时间序列可以分解为不同的组件,在本文中,我将讨论这些不同的组件是什么,如何获取它们以及如何使用 Python 进行时间序列分解。...为了计算和可视化的渐变,可以通过对数变换或Box-Cox变换将乘法模型转换为加法模型: 分解是如何工作的 有多种算法和方法可以将时间序列分解为三个分量。以下的经典方法,经常会使用并且非常直观。...Python中进行时间序列分解 这里让我们使用1948年至1961年的美国航空客运量数据集: #https://www.kaggle.com/datasets/ashfakyeafi/air-passenger-data-for-time-series-analysis...但是我们看到残差在早期和后期具有更高的波动性。所以在为这个时间序列构建预测模型时,需要考虑到这一点。 总结 在这篇文章中,我们展示了如何将时间序列分解为三个基本组成部分:趋势、季节性和残差。...最后通过分解时间序列有助于建立对数据的理解,从而更容易做出未来的预测。 作者:Egor Howell ----

1.4K10

Python中的时间序列分解

时间序列分解是一种技术,它将时间序列分解为几个部分,每个部分代表一个潜在的模式类别、趋势、季节性和噪声。在本教程中,我们将向您展示如何使用Python自动分解时间序列。...首先,我们来讨论一下时间序列的组成部分: 季节性:描述时间序列中的周期性信号。 趋势:描述时间序列是随时间递减、不变还是递增。 噪音:描述从时间序列中分离出季节性和趋势后剩下的东西。...否则,如果趋势和季节性变化随时间增加或减少,那么我们使用乘法模型。 我们这里的数据是按月汇总的。我们要分析的周期是按年的所以我们把周期设为12。...同样,我们可以一次绘制每个组件 result.plot() 总结 通常,在查看时间序列数据时,很难手动提取趋势或识别季节性。...幸运的是,我们可以自动分解时间序列,并帮助我们更清楚地了解组件,因为如果我们从数据中删除季节性,分析趋势会更容易,反之亦然。 作者:Billy Bonaros deephub翻译组

2.1K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用python做时间序列预测三:时间序列分解

    在初始概念篇中,我们简单提到了时间序列由趋势、周期性、季节性、误差构成,本文将介绍如何将时间序列的这些成分分解出来。...分解的使用场景有很多,比如当我们需要计算该时间序列是否具有季节性,或者我们要去除该时间序列的趋势和季节性,让时间序列变得平稳时都会用到时间序列分解。...* Error 分解 下面的代码展示了如何用python从时间序列中分解出相应的成分: from statsmodels.tsa.seasonal import seasonal_decompose...对比上面的加法分解和乘法分解可以看到,加法分解的残差图中有一些季节性成分没有被分解出去,而乘法相对而言随机多了(越随机意味着留有的成分越少),所以对于当前时间序列来说,乘法分解更适合。...小结 时间序列分解不仅可以让我们更清晰的了解序列的特性,有时候人们还会用分解出的残差序列(误差)代替原始序列来做预测,因为原始时间序列一般是非平稳序列,而这个残差序列是平稳序列,有助于我们做出更好的预测

    2.7K41

    一阶差分序列garch建模_时间序列分析

    弱平稳的线性时间序列具有短期相关性(证明见参考书),即通常只有近期的序列值对现时值得影响比较明显,间隔越远的过去值对现时值得影响越小。至于这个间隔,也就是下面要提到的模型的阶数。  ...差分阶数的选择通常越小越好,只要能够使得序列稳定就行。我们可以通过选择不同的阶数,然后进行平稳性检测,选择平稳性表现良好的阶数就行,一般一阶和二阶用的比较多。  ...window,并且对所有的数一视同仁;而采用指数加权移动平均方法,会对当前的数据加大权重,对过去的数据减小权重。...这些平滑法也可以作为经验方法对时间序列进行预测,比如简单的指数平滑法非常类似于自回归阶数为0、差分阶数为1、移动平均值阶数为1 且没有常量的ARIMA 模型。但效果和应用范围都有限制。  ...(系数越大,说明越序列相关,对应的阶数可选,系数趋于0,说明越序列无关,对应的阶数不可选)  (1)用ACF和PACF图判断使用哪种线性时间序列模型  AR模型:ACF拖尾,PACF截尾,看PACF定阶

    1.8K00

    用Python进行时间序列分解和预测

    目录 什么是时间序列? 如何在Python中绘制时间序列数据? 时间序列的要素是什么? 如何分解时间序列? 经典分解法 如何获得季节性调整值?...Python中的加权移动平均(WMA) Python中的指数移动平均(EMA) 什么是时间序列? 顾名思义,时间序列是按照固定时间间隔记录的数据集。换句话说,以时间为索引的一组数据是一个时间序列。...如何分解时间序列? 有两种技术可以获取时间序列要素。在进行深入研究和查看相关Python抽取函数之前,必须了解以下两点: 时间序列不必具有所有要素。 弄清该时间序列是可加的还是可乘的。...这意味着我们可能并不总是能够将时间序列完全分解为可加的或可乘的。 现在你已经了解了不同的模型,下面让我们研究一些提取时间序列要素的常用方法。 经典分解法 该方法起源于1920年,是诸多方法的鼻祖。...如何可视化和更深入地识别数据模式(如果有)? 介绍了可加性和可乘性时间序列模型。 研究了Python中分解时间序列的不同方法。

    3.8K20

    1464: 数的分解

    题目 把2019分解成3个各不相同的正整数之和,并且要求每个正整数都不包含数字2和4,一共有多少种不同的分解方法?...注意交换3个整数的顺序被视为同一种方法,例如1000+1001+18 和1001+1000+18 被视为同一种。 思路 最简单的思路就是暴力枚举法,也是一道填空题,所以代码超时也没关系,提交答案即可。...按照题目要求进行判断,由于不能出现重复,a=b,a=c,b=c,同时也要保证a,b,c三个的位置互换可能会有六种情况。...因此最简单的思路就是第一次循环从1-n,第二次循环从上一次循环+1开始到n,第三次是第二次+1到n,保证了位置上的无重复。...代码 // 1464: [蓝桥杯2019初赛]数的分解 #include using namespace std; bool judge(int num){ while(num

    76210

    基于分解的结构化多元时间序列建模

    今天介绍一篇本周最新发表的多元时间序列预测模型SCNN。这篇文章的核心是,利用因素分解的思路将多元时间序列预测问题模块化,并得益于分解和模块化建模方法,实现多元时间序列预测的可解释性建模。...时间序列预测中,基于分解的建模思路很常用,一般将时间序列分解成趋势项、季节项等因素,对每个因素独立建模,相比直接对复杂的混合序列建模更加容易。...本文的核心思路也是分解,将多元时间序列分解成长周期项、短周期项目、季节项、序列间相关性项等4个因素分别建模。...各个模块的提取过程按照第一节中的多元时间序列生成假设来,对于原始序列,先抽取长周期模块的scale和location,去掉长周期信息后的表示,再输入到下一个组件抽取季节模块,以此类推顺序的进行抽取。...两个分支的预测结果加权求和进行优化。 4、实验效果 本文在多个数据集上,对比了各类多元时间序列预测模型的效果,包括单元序列模型、时空预测模型等。

    44060

    时间序列分解和异常检测方法应用案例

    业务目标是准确地检测各种营销数据的异常情况,这些数据包括跨多个客户和Web源跨越数千个时间序列的网站操作和营销反馈。...() 时间序列分解 第一步是使用时间序列分解time_decompose()。...它使用基于STL的离群值检测方法,其具有围绕时间序列分解的余数的3X内四分位数范围。它非常快,因为最多有两次迭代来确定异常值带。但是,它没有设置整洁的工作流程。也不允许调整3X。...在审查可用的软件包时,我们从中了解到所有软件包的最佳组合: 分解方法:我们包括两个时间序列分解方法:( "stl"使用Loess的传统季节分解)和"twitter"(使用中间跨度的季节分解)。...这些函数按分组时间序列按预期运行,这意味着您可以轻松地将500个时间序列数据集异常化为单个数据集。 用于分析异常的视觉效果: 我们提供了一种方法来围绕分离异常值的“正常”数据。

    1.5K30

    回顾︱时间序列预测与分解有哪些模型?(一)

    图2 时序预测分类对应关系 2 时间序列分解 时间序列由 趋势,季节性和周期性以及剩余的其它部分组成(例如重大事件等),只不过不同的时间序列其占比不同,比如随机波动可能完全是由残差构成的; 当我们将时间序列分解为不同的...,乘法分解的方式在经济学序列中很常见。...分解+预测联合来做,sktime有实现一部分这样的功能,不过sktime并没有进行时间序列分解,而是用多项式回归来提取趋势性数据的部分,因为对于gbdt来说,消除趋势就可以了,周期其实不需要消除,周期本身是循环的...切入比较好理解,gbdt外推能力差对于趋势性强的时间序列数据的拟合能力比较差,通过时间序列分解之后去除了趋势性的部分,那么剩下的季节性+residual的部分,也就是简单的方法没法拟合的部分,用gbdt...DeepAR,可以将时间序列与多个分组关联,可以处理统计学难以处理的非线性问题和规模问题,可以在几乎没有历史数据的情况下执行冷启动时间序列预测,只需要有类似的事件序列相支持。

    2.5K11

    分解学习+对比学习实现更清晰的时间序列预测建模

    ICLR 2022中Salesforce发表了一篇基于分解学习+对比学习的时间序列预测方法,将时间序列的表示分解成趋势项和季节项,实现更清晰的时间序列建模,下面给大家介绍一下这篇文章的核心思路。...以前的深度学习建模方法,直接学习一个统一的表征进行时间序列预测。这个表征通过观测数据学习,其实耦合了噪声项、趋势项和季节项。...基于分解学习的思路,本文提出了CoST,利用分解学习+对比学习实现时间序列预测向量的解耦。 2 建模方法 CoST的整体模型结构如下图所示,底层是一个时间序列骨干网络,用于将输入的时间序列编码成向量。...3 实验结果 文中主要对比了两类模型的效果,第一类是基于表示学习的方法,第二类是端到端的时间序列预测方法。从实验结果可以看出,本文提出的CoST在大多数数据集和预测时间长度上都取得不错的效果提升。...4 总结 本文介绍了ICLR 2022的一篇时间序列预测文章,利用分解学习的思路将时间序列的表示分解成趋势项和季节项,让时间序列建模过程更加清晰,缓解了噪声的干扰,提升预估模型的鲁棒性。 END

    1.4K10

    用python做时间序列预测十:时间序列实践-航司乘客数预测

    本文以航司乘客数预测的例子来组织相关时间序列预测的代码,通过了解本文中的代码,当遇到其它场景的时间序列预测亦可套用。 航司乘客数序列 ?...完整代码 # coding='utf-8' """ 航司乘客数时间序列数据集 该数据集包含了1949-1960年每个月国际航班的乘客总数。...,尤其对于高季节性的时间序列来说,此时可以采用differencing(差分)或decomposition(分解) 消除趋势和季节性:差分、序列分解 :param ts: :return...:param U: 时间序列 :param m: 模板向量维数 :param r: 距离容忍度,一般取0.1~0.25倍的时间序列标准差,也可以理解为相似度的度量阈值,小于这个阈值的2个向量被认为是相似的..._fittedvalues, _fc, _conf, _title) 小结 陆陆续续写了10篇时间序列相关的文章了,本系列主要是应用为主,包括初识概念、时间序列数据可视化、时间序列分解、平稳/非平稳时间序列

    4K70

    Theta方法:一种时间序列分解与预测的简化方法

    Theta方法整合了两个基本概念:分解时间序列和利用基本预测技术来估计未来的价值。 每个数据科学爱好者都知道,时间序列是按一定时间间隔收集或记录的一系列数据点。例如,每日温度或经济指标的月值。...Theta方法核心思想是将时间序列数据分解为两个或多个子序列,然后对每个子序列分别应用简单的指数平滑技术。...差分: 季节性差分:用于减少数据中的季节性效应。 一阶或高阶差分:用于使非平稳序列平稳化,通过消除趋势成分。...Theta线: Theta(0)和Theta(2)线:在原始的Theta方法中,时间序列通过调整二阶差分的系数来创建两条Theta线。...这种方法主要通过分解时间序列并应用简单的指数平滑来预测未来的值,特别是在处理具有明显趋势的数据时表现出色。

    23510

    时间序列数据(上)

    总第92篇 01|时间序列定义: 时间序列是按照一定的时间间隔排列的一组数据,其时间间隔可以是任意的时间单位,如小时、日、周月等。...02|时间序列分析的用途: 系统描述,根据对系统进行观测得到的时间序列数据,用曲线进行拟合,得到客观的描述;比如2017年A产品销量的时间序列曲线是逐渐上涨的一个趋势。...预测未来,通过对过去的时间序列数据进行拟合,预测未来某一时间段的数据;典型的销量预测。...如果某种产品一年的销量数据数据就是一元序列;如果研究的序列不仅仅是一个数列,而是多个变量,即一个时间点对应多个变量时,这种序列称为多元时间序列,比如一天中某一时刻的气温、气压和雨量。...按时间的连续性分,可将时间序列分为离散型时间序列和连续时间序列。 按序列的统计特性分,有平稳时间序列和非平稳时间序列,所谓平稳就是随着时间的推移,数据并未发生大的波动。

    1.6K40

    时间序列数据的预处理

    来源:Deephub Imba本文约2600字,建议阅读5分钟在本文中,我们将看到在深入研究数据建模部分之前应执行的常见时间序列预处理步骤和与时间序列数据相关的常见问题。...时间序列数据随处可见,要进行时间序列分析,我们必须先对数据进行预处理。时间序列预处理技术对数据建模的准确性有重大影响。 在本文中,我们将主要讨论以下几点: 时间序列数据的定义及其重要性。...时间序列数据的预处理步骤。 构建时间序列数据,查找缺失值,对特征进行去噪,并查找数据集中存在的异常值。 首先,让我们先了解时间序列的定义: 时间序列是在特定时间间隔内记录的一系列均匀分布的观测值。...时间序列数据预处理 时间序列数据包含大量信息,但通常是不可见的。与时间序列相关的常见问题是无序时间戳、缺失值(或时间戳)、异常值和数据中的噪声。...在这种方法中,上限和下限是根据特定的统计量度创建的,例如均值和标准差、Z 和 T 分数以及分布的百分位数。

    1.7K20

    论文精读 | 2024 TimeMixer: 可分解多尺度融合的时间序列预测

    标题与作者 摘要 TimeMixer模型针对时间序列预测的复杂性提出了一个多尺度混合架构,旨在利用过去可分解混合(PDM)模块提取过去的关键信息,并通过未来多预测器混合(FMM)模块进行未来序列的预测。...主要工作和创新点 多尺度混合视角: 论文从一种新的多尺度混合视角来处理时间序列预测中的复杂时间变化,利用解耦变化和来自多尺度序列的互补预测能力。...首先对过去的观察数据 x \in \mathbb{R}^{P \times C} 进行下采样,通过平均池化最终得到多尺度时间序列的集合 \mathcal{X} = \{x_0, \ldots, x_M...M4数据集:包含不同频率的100000个时间序列,涵盖小时、日、周、月、季度和年度频率,主要用于短期预测。...(点击文末阅读原文,即可跳转至论文原文链接) 结论 TimeMixer模型的主要贡献和特点可以总结如下: 多尺度混合架构:TimeMixer采用了创新的多尺度混合架构,有效处理时间序列数据在不同时间尺度上的变化

    21810

    数的分解 - 华为OD机试题

    题目描述 给定一个正整数n,如果能够分解为m(m > 1)个连续正整数之和,请输出所有分解中,m最小的分解。 如果给定整数无法分解为连续正整数,则输出字符串"N"。...输入描述 输入数据为一整数,范围为 (1,2^30] 输出描述 比如输入为: 21 输出: 21=10+11 示例一 输入: 21 输出: 21=10+11 说明: 21可以分解的连续正整数组合的形式有多种...: 21=1+2+3+4+5+6 21=6+7+8 21=10+11 因21=10+11,是最短的分解序列。...所以答案是21=10+11 java题解 题解 这是一个用于找到能够分解为连续正整数之和的最小个数 m 的问题。...代码的主要逻辑是枚举可能的分解个数 m,并计算对应的起始值 s,检查是否能够满足条件。

    15110

    时间序列数据库是数据的未来

    我们正在获得更好的硬件,存储和更智能的算法。 数据是做任何事情的标准。 时间序列数据无处不在 即使您不认为自己拥有这种数据,也必须从更广阔的角度考虑管理的数据。...考虑到拥有特定数据的完整历史可以使您获得令人难以置信的结果,例如跟踪特斯拉的窃贼,甚至您个人特斯拉的位置也可以成为时间序列数据。 ?...对于时间序列,您将主要只使用INSERT! 过去,您主要编写随机分布的数据。使用时间序列,您将写入最近的时间间隔! 过去,您专注于基于主键进行编写。...您的第一步可能是尝试找到可在首选云提供商中使用的时间序列数据库。下一步可能是尝试使用已经及时格式化的样本数据的数据集填充您的特定数据库-可能来自Kaggle上处理时间序列分析的任何竞争。...阅读时间序列数据的这一简短介绍后,我将有一个最后的思考思路:所有数据都是时间序列数据吗? 您想进一步研究时间序列吗?

    81110

    【Kaggle时间序列教程:时间序列入门之时间序列的线性回归(1)】

    本系列概述 我翻译了Kaggle上的时间序列教程:为初学者打开学习大门 时间序列分析是数据科学和机器学习中的一个重要领域,广泛应用于金融、气象、销售预测等多个行业。...然而,对于很多初学者来说,时间序列的概念和方法可能会显得有些复杂,尤其是如何构建模型、如何处理数据等。 最近,我在Kaggle上发现了一个关于时间序列分析的非常有价值的教程。...时间序列预测是一个广泛而深远的研究领域,拥有悠久的发展历史。本课程将重点介绍现代机器学习方法在时间序列数据分析中的应用,目标是实现最准确的预测结果。...希望您能在本课程中获得有价值的知识和技能,提升对时间序列数据预测的理解和应用能力! 什么是时间序列? 时间序列是指按照时间顺序记录的一组数据或观测值。...在预测应用中,通常这些数据是以固定的时间间隔(比如每天、每月或每小时)收集的。换句话说,时间序列就是我们用来描述和分析随时间变化的现象的数据集合。

    10810

    【时间序列】时间序列的智能异常检测方案

    Metis时间序列异常检测 Metis 是腾讯开源的一系列AIOps领域的应用实践集合,当前版本开源的时间序列异常检测学件,是从机器学习的角度来解决时序数据的异常检测问题。...数据形式 时间序列是一组按照时间发生先后顺序进行排列的数据点序列。通常一组时间序列的时间间隔为一恒定值(如10秒,1分钟,5分钟)。...、指数移动平均算法、二次指数移动平均算法、三次指数移动平均算法、奇异值分解算法、自回归算法、深度学习算法 时间序列分类特征:熵特征、小波分析特征、值分布特征(直方图分布、分时段的数据量分布) tsfresh...这种方法非常类似于另外一种做法——基于时间序列预测的异常检测方法。即根据历史数据预测未来一段时间内的正常情况,再计算出实际数据和预测数据的残差,根据残差的相对大小来判断是否属于异常。...时间序列异常检测算法 异常检测的N种方法,阿里工程师都盘出来了 时间序列异常检测算法S-H-ESD 基于时间序列的单指标异常检测_雅虎流量数据 阿里巴巴国际站之异常检测 ppt类: 异常检测在苏宁的实践

    22.7K2914
    领券