使用Numpy实现逻辑回归
sigmoid 函数
g(z)=\frac{1}{(1+e^{−z} )}
# sigmoid 函数
def sigmod(z):
return 1/(1+np.exp...,bias,dw,db,rate):
weights=weights-rate*dw
bias=bias-rate*db
return weights,bias
实现逻辑回归...逻辑回归公式
h_θ (x)=\frac{1}{(1+e^{−θ^T X} )}
#逻辑回归
def logistic(X,y,rate,iterations):
count,col=X.shape...y = (X[:, 0] > X[:, 1]).astype(int)
# 添加偏置项
X_with_bias = np.c_[np.ones((X.shape[0], 1)), X]
# 训练逻辑回归模型...y = (X[:, 0] > X[:, 1]).astype(int)
# 添加偏置项
X_with_bias = np.c_[np.ones((X.shape[0], 1)), X]
# 训练逻辑回归模型