首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    盘点一个Pandas多列分组问题

    一、前言 前几天在Python白银交流群【在途中要勤奋的熏肉肉】问了一道Pandas处理的问题,如下图所示。...原始数据如下图所示: 下面是她自己写的代码: # df['name'] = df['name'].str.lower() test['pid'] = test['pid'].astype(int) test...'-'.join(set(s)), } testdf = test.groupby(test['pid']).aggregate(aggregate_funcs) print(testdf) 目前的大概思路如下...顺利地解决了粉丝的问题。 三、总结 大家好,我是皮皮。这篇文章主要盘点了一道使用Pandas处理数据的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...最后感谢粉丝【在途中要勤奋的熏肉肉】提问,感谢【月神】给出的思路和代码解析,感谢【dcpeng】、【猫药师Kelly】等人参与学习交流。

    1.2K10

    Pandas数据排序:单列与多列排序详解

    引言 在数据分析和处理中,对数据进行排序是常见的需求。Pandas库提供了强大的功能来实现数据的排序操作,无论是单列排序还是多列排序,都能轻松应对。...本文将由浅入深地介绍Pandas中单列和多列排序的方法、常见问题及报错,并提供解决方案。 单列排序 基本概念 单列排序是指根据DataFrame中的某一列的数据值对整个DataFrame进行排序。...解决方案: sorted_df_reset = df.sort_values(by='age').reset_index(drop=True) 多列排序 基本概念 多列排序是指根据多个列的数据值对DataFrame...sort_values()方法同样支持多列排序,只需传入一个包含多个列名的列表即可。排序时,Pandas会按照列表中列的顺序依次排序。...总结 通过本文的介绍,我们了解了Pandas中单列和多列排序的基本用法、常见问题及其解决方案。掌握这些知识可以帮助我们在实际数据分析工作中更加高效地处理数据。

    24110

    Pandas读取文本文件为多列

    要使用Pandas将文本文件读取为多列数据,你可以使用pandas.read_csv()函数,并通过指定适当的分隔符来确保正确解析文件中的数据并将其分隔到多个列中。...假设你有一个以逗号分隔的文本文件(CSV格式),每一行包含多个值,你可以这样读取它:1、问题背景当使用Pandas读取文本文件时,可能会遇到整行被读为一列的情况,导致数据无法正确解析。...使用delim_whitespace=True:设置delim_whitespace参数为True,Pandas会自动检测分隔符,并根据空格将文本文件中的数据分隔为多列。...= pd.read_csv(StringIO(a), delimiter=r'\s+', header=None)​print(df.shape)print(df.head())输出结果:(3, 42...,Pandas都提供了灵活的方式来读取它并将其解析为多列数据。

    15810

    Python-科学计算-pandas-11-df获取特定行或者列

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 从Dataframe获取特定的行或者列数据,生成一个列表 Part 1:目标 ?...已知一个Df,如下图 包括3列["time", "pos", "value1"] 包括8行[0,1,2,3,4,5,6,7] 输出 获取["time", "pos", "value1"]任意一列数据,输出为列表...("time-列,数据类型:", type(list4)) print("\n获取行信息") df_2 = df_1.T print(df_2) list5 = df_2[0].tolist() print..."].tolist(),格式:df[列名].tolist() 输出行,本文中其实还是采用输出列的方式,即先将原来的df_1转置再输出列信息,df_2 = df_1.T

    2.1K10

    Pandas库的基础使用系列---获取行和列

    我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...大家还记得它们的区别吗?可以看看上一篇文章的内容。同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel("...../data/年度数据.xls", skiprows=skip_rows, index_col=0)然后,通过下面这段代码获取多行多列df.loc[["市辖区数(个)", "镇数(个)"], ["2021

    63700

    Python-科学计算-pandas-09-df列字符串操作2

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块: 对列的每一个元素进行同样的字符串操作 今天讲其中的1个操作: split Part 1:目标 已知Df某列都是字符串,每一个字符串都有一个文件与其对应...后的文件类型 组合两者 加入到原来的Df中 修改前后文件名 Part 2:代码 import pandas as pd dict_1 = {"file_name": ["P10-CD1.txt",....str.split("-", expand=True),对列file_name的每个元素实行split("-")操作,理论上生成一个列表,expand=True表示将生成列表结果分为多个列 se_1..._1新增一列new_file_name 本文为原创作品

    50410

    Python-科学计算-pandas-14-df按行按列进行转换

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 将Df按行按列进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征...- 数据格式为一个列表 - 列表中每一个元素为一个字典,每个字典对应前端表格的一行 - 单个字典的键为前端表格的列名,字典的值为前端表格每列取的值 简单来说就是要将一个Df转换为一个列表,该列表有特定的格式...表示记录,对应数据库的行 Part 4:延伸 以上方法将Df按行转换,那么是否可以按列进行转换呢?...查了下orient参数,发现可以取值的参数非常多,如下图所示 发现list满足需求,观察实际输出结果,生成一个字典。

    1.9K30

    Pandas 查找,丢弃列值唯一的列

    前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。

    5.7K21

    Pandas数据分组的函数应用(df.apply()、df.agg()和df.transform()、df.applymap())

    3种方法: apply():逐行或逐列应用该函数 agg()和transform():聚合和转换 applymap():逐元素应用函数 apply()函数 介绍 apply函数是pandas里面所有函数中自由度最高的函数...axis=0,表示将一列数据作为Series的数据结构传入给定的function中 print(t1) t2 = df.apply(f, axis=1) print(t2) 输出结果如下所示...>>> type(df['score_math'].apply(np.mean)) pandas.core.series.Series'> #逐行求每个学生的平均分 >>> df.apply...,就是每一行或每一列返回一个值; 返回大小相同的DataFrame:如下面自定的lambda函数。...()的特例,可以对pandas对象进行逐行或逐列的处理; 能使用agg()的地方,基本上都可以使用apply()代替。

    2.3K10

    pandas中的loc和iloc_pandas获取指定数据的行和列

    大家好,又见面了,我是你们的朋友全栈君 实际操作中我们经常需要寻找数据的某行或者某列,这里介绍我在使用Pandas时用到的两种方法:iloc和loc。...目录 1.loc方法 (1)读取第二行的值 (2)读取第二列的值 (3)同时读取某行某列 (4)读取DataFrame的某个区域 (5)根据条件读取 (6)也可以进行切片操作 2.iloc方法 (1)...读取第二行的值 (2)读取第二行的值 (3)同时读取某行某列 (4)进行切片操作 ---- loc:通过行、列的名称或标签来索引 iloc:通过行、列的索引位置来寻找数据 首先,我们先创建一个...Dataframe,生成数据,用于下面的演示 import pandas as pd import numpy as np # 生成DataFrame data = pd.DataFrame(np.arange...[1,:] (2)读取第二列的值 # 读取第二列全部值 data2 = data.loc[ : ,"B"] 结果: (3)同时读取某行某列 # 读取第1行,第B列对应的值 data3

    10K21

    盘点一个Pandas空的df追加数据的问题

    想建一个空的df清单数据,然后一步步添加行列数据 但是直接建一个空的df新增列数据又添加不成功 得先有一列数据才能加成功 这个是添加的方式有问题 还是这种创建方法不行?...二、实现过程 这里【隔壁山楂】给了一个指导:不是说先有列才行,简单来说是得先有行才能继续添加列数据,所以你在空df中添加新列要事先增加预期的行数。...这篇文章主要盘点了一个Pandas数据处理的问题,文中针对该问题,给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。...------------------- End ------------------- 往期精彩文章推荐: 分享一个批量转换某个目录下的所有ppt->pdf的Python代码 通过pandas读取列的数据怎么把一列中的负数全部转为正数...Pandas实战——灵活使用pandas基础知识轻松处理不规则数据 Python自动化办公的过程中另存为Excel文件无效?

    28010

    Pandas中选择和过滤数据的终极指南

    Python pandas库提供了几种选择和过滤数据的方法,如loc、iloc、[]括号操作符、query、isin、between等等 本文将介绍使用pandas进行数据选择和过滤的基本技术和函数。...无论是需要提取特定的行或列,还是需要应用条件过滤,pandas都可以满足需求。 选择列 loc[]:根据标签选择行和列。...['Order Quantity'].replace(5, 'equals 5', inplace=True) 总结 Python pandas提供了很多的函数和技术来选择和过滤DataFrame中的数据...比如我们常用的 loc和iloc,有很多人还不清楚这两个的区别,其实它们很简单,在Pandas中前面带i的都是使用索引数值来访问的,例如 loc和iloc,at和iat,它们访问的效率是类似的,只不过是方法不一样...行标签就是我们所说的索引(index),列标签就是列名(columns) iloc,根据标签的位置索引。 iloc就是 integer loc的缩写。

    44110
    领券